File size: 8,720 Bytes
f35cc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from ..numpy_encode import *
import numpy as np
from enum import Enum
import torch
from ..vocab import *
from functools import partial

SEQType = Enum('SEQType', 'Mask, Sentence, Melody, Chords, Empty')

class MusicItem():
    def __init__(self, data, vocab, stream=None, position=None):
        self.data = data
        self.vocab = vocab
        self._stream = stream
        self._position = position
    def __repr__(self): return '\n'.join([
        f'\n{self.__class__.__name__} - {self.data.shape}',
        f'{self.vocab.textify(self.data[:10])}...'])
    def __len__(self): return len(self.data)

    @classmethod
    def from_file(cls, midi_file, vocab): 
        return cls.from_stream(file2stream(midi_file), vocab)
    @classmethod
    def from_stream(cls, stream, vocab):
        if not isinstance(stream, music21.stream.Score): stream = stream.voicesToParts()
        chordarr = stream2chordarr(stream) # 2.
        npenc = chordarr2npenc(chordarr) # 3.
        return cls.from_npenc(npenc, vocab, stream)
    @classmethod
    def from_npenc(cls, npenc, vocab, stream=None): return MusicItem(npenc2idxenc(npenc, vocab), vocab, stream)
    
    @classmethod
    def from_idx(cls, item, vocab):
        idx,pos = item
        return MusicItem(idx, vocab=vocab, position=pos)
    def to_idx(self): return self.data, self.position
    
    @classmethod
    def empty(cls, vocab, seq_type=SEQType.Sentence):
        return MusicItem(seq_prefix(seq_type, vocab), vocab)

    @property
    def stream(self):
        self._stream = self.to_stream() if self._stream is None else self._stream
        return self._stream
    
    def to_stream(self, bpm=120):
        return idxenc2stream(self.data, self.vocab, bpm=bpm)

    def to_tensor(self, device=None):
        return to_tensor(self.data, device)
    
    def to_text(self, sep=' '): return self.vocab.textify(self.data, sep)
    
    @property
    def position(self): 
        self._position = position_enc(self.data, self.vocab) if self._position is None else self._position
        return self._position
    
    def get_pos_tensor(self, device=None): return to_tensor(self.position, device)

    def to_npenc(self):
        return idxenc2npenc(self.data, self.vocab)

    def show(self, format:str=None):
        return self.stream.show(format)
    def play(self): self.stream.show('midi')
        
    @property
    def new(self):
        return partial(type(self), vocab=self.vocab)

    def trim_to_beat(self, beat, include_last_sep=False):
        return self.new(trim_to_beat(self.data, self.position, self.vocab, beat, include_last_sep))
    
    def transpose(self, interval):
        return self.new(tfm_transpose(self.data, interval, self.vocab), position=self._position)
    
    def append(self, item):
        return self.new(np.concatenate((self.data, item.data), axis=0))
    
    def mask_pitch(self, section=None):
        return self.new(self.mask(self.vocab.note_range, section), position=self.position)
    
    def mask_duration(self, section=None, keep_position_enc=True):
        masked_data = self.mask(self.vocab.dur_range, section)
        if keep_position_enc: return self.new(masked_data, position=self.position)
        return self.new(masked_data)

    def mask(self, token_range, section_range=None):
        return mask_section(self.data, self.position, token_range, self.vocab.mask_idx, section_range=section_range)
    
    def pad_to(self, bptt):
        data = pad_seq(self.data, bptt, self.vocab.pad_idx)
        pos = pad_seq(self.position, bptt, 0)
        return self.new(data, stream=self._stream, position=pos)
    
    def split_stream_parts(self):
        self._stream = separate_melody_chord(self.stream)
        return self.stream

    def remove_eos(self):
        if self.data[-1] == self.vocab.stoi[EOS]: return self.new(self.data, stream=self.stream)
        return self

    def split_parts(self):
        return self.new(self.data, stream=separate_melody_chord(self.stream), position=self.position)
        
def pad_seq(seq, bptt, value):
    pad_len = max(bptt-seq.shape[0], 0)
    return np.pad(seq, (0, pad_len), 'constant', constant_values=value)[:bptt]

def to_tensor(t, device=None):
    t = t if isinstance(t, torch.Tensor) else torch.tensor(t)
    if device is None and torch.cuda.is_available(): t = t.cuda()
    else: t.to(device)
    return t.long()
    
def midi2idxenc(midi_file, vocab):
    "Converts midi file to index encoding for training"
    npenc = midi2npenc(midi_file) # 3.
    return npenc2idxenc(npenc, vocab)

def idxenc2stream(arr, vocab, bpm=120):
    "Converts index encoding to music21 stream"
    npenc = idxenc2npenc(arr, vocab)
    return npenc2stream(npenc, bpm=bpm)

# single stream instead of note,dur
def npenc2idxenc(t, vocab, seq_type=SEQType.Sentence, add_eos=False):
    "Transforms numpy array from 2 column (note, duration) matrix to a single column"
    "[[n1, d1], [n2, d2], ...] -> [n1, d1, n2, d2]"
    if isinstance(t, (list, tuple)) and len(t) == 2: 
        return [npenc2idxenc(x, vocab, start_seq) for x in t]
    t = t.copy()
    
    t[:, 0] = t[:, 0] + vocab.note_range[0]
    t[:, 1] = t[:, 1] + vocab.dur_range[0]
    
    prefix = seq_prefix(seq_type, vocab)
    suffix = np.array([vocab.stoi[EOS]]) if add_eos else np.empty(0, dtype=int)
    return np.concatenate([prefix, t.reshape(-1), suffix])

def seq_prefix(seq_type, vocab):
    if seq_type == SEQType.Empty: return np.empty(0, dtype=int)
    start_token = vocab.bos_idx
    if seq_type == SEQType.Chords: start_token = vocab.stoi[CSEQ]
    if seq_type == SEQType.Melody: start_token = vocab.stoi[MSEQ]
    return np.array([start_token, vocab.pad_idx])

def idxenc2npenc(t, vocab, validate=True):
    if validate: t = to_valid_idxenc(t, vocab.npenc_range)
    t = t.copy().reshape(-1, 2)
    if t.shape[0] == 0: return t
        
    t[:, 0] = t[:, 0] - vocab.note_range[0]
    t[:, 1] = t[:, 1] - vocab.dur_range[0]
    
    if validate: return to_valid_npenc(t)
    return t

def to_valid_idxenc(t, valid_range):
    r = valid_range
    t = t[np.where((t >= r[0]) & (t < r[1]))]
    if t.shape[-1] % 2 == 1: t = t[..., :-1]
    return t

def to_valid_npenc(t):
    is_note = (t[:, 0] < VALTSEP) | (t[:, 0] >= NOTE_SIZE)
    invalid_note_idx = is_note.argmax()
    invalid_dur_idx = (t[:, 1] < 0).argmax()

    invalid_idx = max(invalid_dur_idx, invalid_note_idx)
    if invalid_idx > 0: 
        if invalid_note_idx > 0 and invalid_dur_idx > 0: invalid_idx = min(invalid_dur_idx, invalid_note_idx)
        print('Non midi note detected. Only returning valid portion. Index, seed', invalid_idx, t.shape)
        return t[:invalid_idx]
    return t

def position_enc(idxenc, vocab):
    "Calculates positional beat encoding."
    sep_idxs = (idxenc == vocab.sep_idx).nonzero()[0]
    sep_idxs = sep_idxs[sep_idxs+2 < idxenc.shape[0]] # remove any indexes right before out of bounds (sep_idx+2)
    dur_vals = idxenc[sep_idxs+1]
    dur_vals[dur_vals == vocab.mask_idx] = vocab.dur_range[0] # make sure masked durations are 0
    dur_vals -= vocab.dur_range[0]
    
    posenc = np.zeros_like(idxenc)
    posenc[sep_idxs+2] = dur_vals
    return posenc.cumsum()

def beat2index(idxenc, pos, vocab, beat, include_last_sep=False):
    cutoff = find_beat(pos, beat)
    if cutoff < 2: return 2 # always leave starter tokens
    if len(idxenc) < 2 or include_last_sep: return cutoff
    if idxenc[cutoff - 2] == vocab.sep_idx: return cutoff - 2
    return cutoff

def find_beat(pos, beat, sample_freq=SAMPLE_FREQ, side='left'):
    return np.searchsorted(pos, beat * sample_freq, side=side)

# TRANSFORMS

def tfm_transpose(x, value, vocab):
    x = x.copy()
    x[(x >= vocab.note_range[0]) & (x < vocab.note_range[1])] += value
    return x

def trim_to_beat(idxenc, pos, vocab, to_beat=None, include_last_sep=True):
    if to_beat is None: return idxenc
    cutoff = beat2index(idxenc, pos, vocab, to_beat, include_last_sep=include_last_sep)
    return idxenc[:cutoff]

def mask_input(xb, mask_range, replacement_idx):
    xb = xb.copy()
    xb[(xb >= mask_range[0]) & (xb < mask_range[1])] = replacement_idx
    return xb

def mask_section(xb, pos, token_range, replacement_idx, section_range=None):
    xb = xb.copy()
    token_mask = (xb >= token_range[0]) & (xb < token_range[1])

    if section_range is None: section_range = (None, None)
    section_mask = np.zeros_like(xb, dtype=bool)
    start_idx = find_beat(pos, section_range[0]) if section_range[0] is not None else 0
    end_idx = find_beat(pos, section_range[1]) if section_range[1] is not None else xb.shape[0]
    section_mask[start_idx:end_idx] = True
    
    xb[token_mask & section_mask] = replacement_idx
    return xb