Spaces:
Build error
Build error
# SOURCE: https://github.com/cybertronai/pytorch-lamb/ | |
import collections | |
import math | |
import torch | |
from torch.optim import Optimizer | |
class Lamb(Optimizer): | |
r"""Implements Lamb algorithm. | |
It has been proposed in `Reducing BERT Pre-Training Time from 3 Days to 76 Minutes`_. | |
Arguments: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-8) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
adam (bool, optional): always use trust ratio = 1, which turns this into | |
Adam. Useful for comparison purposes. | |
.. _Reducing BERT Pre-Training Time from 3 Days to 76 Minutes: | |
https://arxiv.org/abs/1904.00962 | |
""" | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-4, | |
weight_decay=0, adam=False): | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
defaults = dict(lr=lr, betas=betas, eps=eps, | |
weight_decay=weight_decay) | |
self.adam = adam | |
super(Lamb, self).__init__(params, defaults) | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
grad = p.grad.data | |
if grad.is_sparse: | |
raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.') | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state['step'] = 0 | |
# Exponential moving average of gradient values | |
state['exp_avg'] = torch.zeros_like(p.data) | |
# Exponential moving average of squared gradient values | |
state['exp_avg_sq'] = torch.zeros_like(p.data) | |
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
beta1, beta2 = group['betas'] | |
state['step'] += 1 | |
if group['weight_decay'] != 0: | |
grad.add_(group['weight_decay'], p.data) | |
# Decay the first and second moment running average coefficient | |
exp_avg.mul_(beta1).add_(1 - beta1, grad) | |
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) | |
denom = exp_avg_sq.sqrt().add_(group['eps']) | |
bias_correction1 = 1 - beta1 ** state['step'] | |
bias_correction2 = 1 - beta2 ** state['step'] | |
# Apply bias to lr to avoid broadcast. | |
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 | |
adam_step = exp_avg / denom | |
# L2 norm uses sum, but here since we're dividing, use mean to avoid overflow. | |
r1 = p.data.pow(2).mean().sqrt() | |
r2 = adam_step.pow(2).mean().sqrt() | |
r = 1 if r1 == 0 or r2 == 0 else min(r1/r2, 10) | |
state['r1'] = r1 | |
state['r2'] = r2 | |
state['r'] = r | |
if self.adam: | |
r = 1 | |
p.data.add_(-step_size * r, adam_step) | |
return loss | |