File size: 3,219 Bytes
de77006
 
 
 
73f7de1
de77006
 
 
 
 
 
 
 
 
 
 
73f7de1
de77006
73f7de1
de77006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e2dab1
de77006
 
1e2dab1
de77006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73f7de1
1e2dab1
 
 
73f7de1
 
 
ef7e5b5
73f7de1
 
 
 
1e2dab1
 
 
 
 
73f7de1
 
1e2dab1
de77006
 
 
73f7de1
 
1e2dab1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer


MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))


DESCRIPTION = """\
# CataLlama-v0.1 Chat
This Space demonstrates model [CataLlama-v0.1-Instruct-DPO](https://huggingface.co/catallama/CataLlama-v0.1-Instruct-DPO).

CataLlama is a fine-tune on Llama-3 8B to enhance it's proficiency on the Catalan Language.
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"


if torch.cuda.is_available():
    model_id = "catallama/CataLlama-v0.1-Instruct-DPO"
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
    tokenizer = AutoTokenizer.from_pretrained(model_id)


@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
) -> Iterator[str]:
    
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
        
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
        
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        temperature=temperature,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)



chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(value="Ets un chatbot amigable. Responeu preguntes i ajudeu els usuaris", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.90,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
    examples=[
        ["A quina velocitat poden volar els cocodrils?"],
        ["Explica pas a pas com resoldre l'equació següent: 2x + 10 = 0"],
        ["Pot Donald Trump sopar amb Juli Cèsar?"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    chat_interface.render()


if __name__ == "__main__":
    demo.queue(max_size=20).launch()