Spaces:
Runtime error
Runtime error
Catherine ZHOU
commited on
Commit
·
2f404b6
1
Parent(s):
57ffe1d
update changes
Browse files- app.py +96 -29
- flagged/Generated images/tmphv4zf24i.png +0 -0
- flagged/log.csv +2 -0
app.py
CHANGED
@@ -26,17 +26,17 @@ with open(emb_filename, 'rb') as fIn:
|
|
26 |
#print(f'img_emb: {print(img_emb)}')
|
27 |
#print(f'img_names: {print(img_names)}')
|
28 |
|
29 |
-
|
30 |
-
def search_text(query, top_k=1
|
31 |
"""" Search an image based on the text query.
|
32 |
|
33 |
Args:
|
34 |
-
query ([string]):
|
35 |
-
top_k (int, optional):
|
36 |
-
top_rel_image (int, optional): [Relevance label of the image]. Defaults to 1
|
37 |
|
38 |
Returns:
|
39 |
-
[list]:
|
|
|
40 |
"""
|
41 |
# First, we encode the query.
|
42 |
inputs = tokenizer([query], padding=True, return_tensors="pt")
|
@@ -48,35 +48,102 @@ def search_text(query, top_k=1, top_rel_image=1):
|
|
48 |
hits = util.semantic_search(query_emb, img_emb, top_k=top_k)[0]
|
49 |
|
50 |
image = []
|
|
|
51 |
for hit in hits:
|
52 |
#print(img_names[hit['corpus_id']])
|
53 |
object = Image.open(os.path.join(
|
54 |
"photos/", img_names[hit['corpus_id']]))
|
55 |
image.append(object)
|
|
|
56 |
#print(f'array length is: {len(image)}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
description = "My version of the Gradio Demo fo CLIP model. \n This demo is based on assessment for the 🤗 Huggingface course 2. \n To use it, simply write which image you are looking for. Read more at the links below.",
|
68 |
-
article = "You find more information about this demo on my ✨ github repository [marcelcastrobr](https://github.com/marcelcastrobr/huggingface_course2)",
|
69 |
-
fn=search_text,
|
70 |
-
inputs=[
|
71 |
-
gr.Textbox(lines=4,
|
72 |
-
label="Write what you are looking for in an image...",
|
73 |
-
placeholder="Text Here..."),
|
74 |
-
gr.Slider(0, 5, step=1),
|
75 |
-
gr.Dropdown(list(range(0, 6)), multiselect=False,
|
76 |
-
label="Relevance Image Label")
|
77 |
-
],
|
78 |
-
outputs=[gr.Image(
|
79 |
-
label="Generated images", show_label=False, elem_id="output image"
|
80 |
-
).style(height="auto", width="auto")]
|
81 |
-
,examples=examples
|
82 |
-
).launch(debug=True)
|
|
|
26 |
#print(f'img_emb: {print(img_emb)}')
|
27 |
#print(f'img_names: {print(img_names)}')
|
28 |
|
29 |
+
# helper functions
|
30 |
+
def search_text(query, top_k=1):
|
31 |
"""" Search an image based on the text query.
|
32 |
|
33 |
Args:
|
34 |
+
query ([string]): query you want search for
|
35 |
+
top_k (int, optional): Amount of images o return]. Defaults to 1.
|
|
|
36 |
|
37 |
Returns:
|
38 |
+
[list]: list of images that are related to the query.
|
39 |
+
[list]: list of image embs that are related to the query.
|
40 |
"""
|
41 |
# First, we encode the query.
|
42 |
inputs = tokenizer([query], padding=True, return_tensors="pt")
|
|
|
48 |
hits = util.semantic_search(query_emb, img_emb, top_k=top_k)[0]
|
49 |
|
50 |
image = []
|
51 |
+
image_emb = []
|
52 |
for hit in hits:
|
53 |
#print(img_names[hit['corpus_id']])
|
54 |
object = Image.open(os.path.join(
|
55 |
"photos/", img_names[hit['corpus_id']]))
|
56 |
image.append(object)
|
57 |
+
image_emb.append([img_emb[hit['corpus_id']]])
|
58 |
#print(f'array length is: {len(image)}')
|
59 |
+
return image, image_emb
|
60 |
+
|
61 |
+
def select_image(evt: gr.SelectData):
|
62 |
+
""" Returns the index of the selected image
|
63 |
+
|
64 |
+
Argrs:
|
65 |
+
evt (SelectData): the event we are listening to
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
int: index of the selected image
|
69 |
+
"""
|
70 |
+
return evt.index
|
71 |
|
72 |
+
def select_image_relevance(evt: gr.SelectData, selected_embs, image_relevance_state):
|
73 |
+
""" Returns the relevance of the selected image
|
74 |
+
|
75 |
+
Args:
|
76 |
+
evt (SelectData): the event we are listening to
|
77 |
+
selected_embs (int): the index of the selected image
|
78 |
+
image_relevance_state (State): the current state of the image relevance
|
79 |
|
80 |
+
Returns:
|
81 |
+
state: the new state of the image relevance
|
82 |
+
"""
|
83 |
+
image_relevance_state[selected_embs] = evt.value
|
84 |
+
return image_relevance_state
|
85 |
+
|
86 |
+
|
87 |
+
callback = gr.CSVLogger()
|
88 |
+
with gr.Blocks() as demo:
|
89 |
+
# create display
|
90 |
+
gr.Markdown(
|
91 |
+
"""
|
92 |
+
# Text to Image using CLIP Model 📸
|
93 |
+
|
94 |
+
---
|
95 |
+
|
96 |
+
My version of the Gradio Demo fo CLIP model with the option to select relevance level of each image.
|
97 |
+
|
98 |
+
This demo is based on assessment for the 🤗 Huggingface course 2. \n
|
99 |
+
To use it, simply write which image you are looking for. Read more at the links below.
|
100 |
+
"""
|
101 |
+
)
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column():
|
104 |
+
query = gr.Textbox(lines=4,
|
105 |
+
label="Write what you are looking for in an image...",
|
106 |
+
placeholder="Text Here...")
|
107 |
+
top_k = gr.Slider(0, 5, step=1)
|
108 |
+
with gr.Column():
|
109 |
+
gallery = gr.Gallery(
|
110 |
+
label="Generated images", show_label=False, elem_id="gallery"
|
111 |
+
).style(grid=[3], height="auto")
|
112 |
+
relevance = gr.Dropdown(list(range(0, 6)), multiselect=False,
|
113 |
+
label="How relevent is this image to your input text?")
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Column():
|
116 |
+
submit_btn = gr.Button("Submit")
|
117 |
+
with gr.Column():
|
118 |
+
save_btn = gr.Button("Save")
|
119 |
+
gr.Markdown("## Here are some examples you can use:")
|
120 |
+
gr.Examples(examples, [query, top_k])
|
121 |
+
|
122 |
+
# when user input query and top_k
|
123 |
+
gallery_embs = [[] for _ in range(top_k.value)]
|
124 |
+
submit_btn.click(search_text, [query, top_k], [gallery, gallery_embs])
|
125 |
+
image_relevance = {embs: 0 for embs in gallery_embs}
|
126 |
+
image_relevance_state = gr.State(image_relevance, label="image_relevance_state")
|
127 |
+
selected_index = 0
|
128 |
+
callback.setup([image_relevance_state])
|
129 |
+
|
130 |
+
# when user select an image in the gallery
|
131 |
+
gallery.select(select_image, None, selected_index)
|
132 |
+
# when user select the relevance of the image
|
133 |
+
relevance.select(fn=select_image_relevance,
|
134 |
+
input=[gallery_embs[selected_index], image_relevance_state],
|
135 |
+
output=image_relevance_state)
|
136 |
+
|
137 |
+
# when user click save button
|
138 |
+
# we will flag the current image_relevance_state
|
139 |
+
save_btn.click(lambda *args: callback.flag(args), [image_relevance_state], None, preprocess=False)
|
140 |
+
gallery_embs = []
|
141 |
+
|
142 |
+
gr.Markdown(
|
143 |
+
"""
|
144 |
+
You find more information about this demo on my ✨ github repository [marcelcastrobr](https://github.com/marcelcastrobr/huggingface_course2)
|
145 |
+
"""
|
146 |
+
)
|
147 |
|
148 |
+
if __name__ == "__main__":
|
149 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flagged/Generated images/tmphv4zf24i.png
ADDED
![]() |
flagged/log.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Write what you are looking for in an image...,top_k,Relevance Image Label,Generated images,flag,username,timestamp
|
2 |
+
cat,3,2,/Users/zhilinzhou/Local-documents/Workspace/CLIP-image-search/flagged/Generated images/tmphv4zf24i.png,,,2023-04-03 20:56:01.812245
|