File size: 41,521 Bytes
ea0e7ce
 
 
 
 
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f80afe
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f80afe
 
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f80afe
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f80afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f80afe
 
65753fd
 
6f80afe
 
 
 
 
 
 
 
 
 
 
 
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
6f80afe
 
 
 
 
 
 
 
 
 
 
 
65753fd
 
6f80afe
65753fd
 
 
 
6f80afe
65753fd
6f80afe
65753fd
 
 
 
 
 
 
 
6f80afe
 
 
65753fd
 
 
 
 
6f80afe
 
65753fd
6f80afe
65753fd
 
 
 
 
 
 
 
 
 
 
6f80afe
 
 
 
65753fd
 
 
 
 
 
6f80afe
 
65753fd
6f80afe
65753fd
 
6f80afe
65753fd
 
 
 
 
 
 
 
 
6f80afe
 
65753fd
 
 
 
 
 
 
 
6f80afe
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f80afe
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f80afe
65753fd
 
 
6f80afe
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f80afe
 
 
 
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f80afe
 
 
 
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea0e7ce
 
 
65753fd
 
 
ea0e7ce
 
 
 
65753fd
 
ea0e7ce
 
 
 
65753fd
 
 
 
 
 
 
 
 
 
6f80afe
65753fd
 
 
6f80afe
65753fd
 
 
 
6f80afe
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f80afe
 
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f80afe
65753fd
 
 
 
 
 
 
ea0e7ce
 
 
65753fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f80afe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
# --------------------------------------
# Chat with Documents
# キカガク 2023.4月期 最終成果アプリ
# Copyright. cawacci
# --------------------------------------

# --------------------------------------
# Libraries
# --------------------------------------
import os
import time
import gc # メモリ解放
import re # 正規表現で文章をクリーンアップ

# HuggingFace
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# OpenAI
import openai
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI

# LangChain
import langchain
from langchain.llms import HuggingFacePipeline
from transformers import pipeline

from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import LLMChain, VectorDBQA
from langchain.vectorstores import Chroma

from langchain import PromptTemplate, ConversationChain
from langchain.chains.question_answering import load_qa_chain # QA Chat
from langchain.document_loaders import SeleniumURLLoader # URL取得
from langchain.docstore.document import Document # テキストをドキュメント化
from langchain.memory import ConversationSummaryBufferMemory # チャット履歴

from typing import Any
from langchain.text_splitter import RecursiveCharacterTextSplitter

from langchain.tools import DuckDuckGoSearchRun

# Gradio
import gradio as gr
from pypdf import PdfReader
import requests # DeepL API request

# Mecab
import MeCab

# --------------------------------------
#  ユーザ別セッションの変数値を記録するクラス
#  (参考)https://blog.shikoan.com/gradio-state/
# --------------------------------------
class SessionState:
	def __init__(self):
		# Hugging Face
		self.tokenizer						= None
		self.pipe									= None
		self.model								= None

		# LangChain
		self.llm									= None
		self.embeddings						= None
		self.current_model				= ""
		self.current_embedding		= ""
		self.db										= None		# Vector DB
		self.memory								= None		# Langchain Chat Memory
		self.conversation_chain		= None		# ConversationChain
		self.query_generator			= None		# Query Refiner with Chat history
		self.qa_chain							= None		# load_qa_chain
		self.web_summary_chain		= None		# Summarize web search result
		self.embedded_urls				= []
		self.similarity_search_k	= None		# No. of similarity search documents to find.
		self.summarization_mode		=	None		# Stuff / Map Reduce / Refine

		# Apps
		self.dialogue							= []			# Recent Chat History for display

	# --------------------------------------
	# Empty Cache
	# --------------------------------------
	def cache_clear(self):
		if torch.cuda.is_available():
			torch.cuda.empty_cache()	# GPU Memory Clear

		gc.collect()								# CPU Memory Clear

	# --------------------------------------
	# Clear Models (llm: llm model, embd: embeddings, db: vectordb)
	# --------------------------------------
	def clear_memory(self, llm=False, embd=False, db=False):
		# DB
		if db and self.db:
			self.db.delete_collection()
			self.db									= None
			self.embedded_urls			= []

		# Embeddings model
		if llm or embd:
			self.embeddings 				= None
			self.current_embedding	= ""
			self.qa_chain 					= None

		# LLM model
		if llm:
			self.llm								= None
			self.pipe								= None
			self.model							= None
			self.current_model			= ""
			self.tokenizer					= None
			self.memory 						= None
			self.chat_history				= []			# ←必要性を要検証

		self.cache_clear()

# --------------------------------------
# 自作TextSplitter(テキストをLLMのトークン数内に分割)
# (参考)https://www.sato-susumu.com/entry/2023/04/30/131338
#  → 「!」、「?」、「)」、「.」、「!」、「?」、「,」などを追加
# --------------------------------------
class JPTextSplitter(RecursiveCharacterTextSplitter):
    def __init__(self, **kwargs: Any):
        separators = ["\n\n", "\n", "。", "!", "?", ")","、", ".", "!", "?", ",", " ", ""]
        super().__init__(separators=separators, **kwargs)

# チャンクの分割
chunk_size    = 512
chunk_overlap = 35

text_splitter = JPTextSplitter(
    chunk_size    = chunk_size,  # チャンクの最大文字数
    chunk_overlap = chunk_overlap,  # オーバーラップの最大文字数
)

# --------------------------------------
# 文中から人名を抽出
# --------------------------------------
def name_detector(text: str) -> list:
  mecab = MeCab.Tagger()
  mecab.parse('')  # ←バグ対応
  node = mecab.parseToNode(text).next
  names = []

  while node:
    if node.feature.split(',')[3] == "姓":
      if node.next and node.next.feature.split(',')[3] == "名":
        names.append(str(node.surface) + str(node.next.surface))
      else:
        names.append(node.surface)
    if node.feature.split(',')[3] == "名":
      if node.prev and node.prev.feature.split(',')[3] == "姓":
        pass
      else:
        names.append(str(node.surface))

    node = node.next

  names = list(set(names))

  return names

# --------------------------------------
# DeepL でメモリを翻訳しトークン数を削減(OpenAIモデル利用時)
# --------------------------------------
DEEPL_API_ENDPOINT = "https://api-free.deepl.com/v2/translate"
DEEPL_API_KEY = os.getenv("DEEPL_API_KEY")

def deepl_memory(ss: SessionState) -> (SessionState):
  if ss.current_model == "gpt-3.5-turbo":
    # メモリから会話履歴を取得
    user_message = ss.memory.chat_memory.messages[-2].content
    ai_message = ss.memory.chat_memory.messages[-1].content
    text = [user_message, ai_message]

    # DeepL設定
    params = {
        "auth_key": DEEPL_API_KEY,
        "text": text,
        "target_lang": "EN",
        "source_lang": "JA",
        "tag_handling": "xml",
        "igonere_tags": "x",
    }
    request = requests.post(DEEPL_API_ENDPOINT, data=params)
    request.raise_for_status()  # 応答のステータスコードがエラーの場合は例外を発生させます。
    response = request.json()

    # JSONから翻訳文を取得
    user_message = response["translations"][0]["text"]
    ai_message = response["translations"][1]["text"]

    # memoryの最後の会話を削除し、翻訳文を追加
    ss.memory.chat_memory.messages = ss.memory.chat_memory.messages[:-2]
    ss.memory.chat_memory.add_user_message(user_message)
    ss.memory.chat_memory.add_ai_message(ai_message)

  return ss

# --------------------------------------
# DuckDuckGo Web検索結果を入力プロンプトに追加
# --------------------------------------
# DEEPL_API_ENDPOINT = "https://api-free.deepl.com/v2/translate"
# DEEPL_API_KEY = os.getenv("DEEPL_API_KEY")

def web_search(ss: SessionState, query) -> (SessionState, str):
  search =  DuckDuckGoSearchRun(verbose=True)
  web_result = search(query)

  # 人名の抽出
  names = []
  names.extend(name_detector(query))
  names.extend(name_detector(web_result))
  if len(names)==0:
    names = ""
  elif len(names)==1:
    names = names[0]
  else:
    names = ", ".join(names)

  if ss.current_model == "gpt-3.5-turbo":
    text = [query, web_result]
    params = {
        "auth_key": DEEPL_API_KEY,
        "text": text,
        "target_lang": "EN",
        "source_lang": "JA",
        "tag_handling": "xml",
        "igonere_tags": "x",
    }
    request = requests.post(DEEPL_API_ENDPOINT, data=params)
    response = request.json()

    query = response["translations"][0]["text"]
    web_result = response["translations"][1]["text"]
    web_result = ss.web_summary_chain({'query': query, 'context': web_result})['text']

  if names != "":
    web_query = f"""
    {query}
    Use the following information as a reference to answer the question above in Japanese. When translating names of Japanese people, refer to Japanese Names as a translation guide.
    Reference: {web_result}
    Japanese Names: {names}
    """.strip()
  else:
    web_query = query + "\nUse the following information as a reference to answer the question above in the Japanese.\n===\nReference: " + web_result + "\n==="


  return ss, web_query

# --------------------------------------
# LangChain カスタムプロンプト各種
#   llama tokenizer
#     https://belladoreai.github.io/llama-tokenizer-js/example-demo/build/
#   OpenAI tokenizer
#     https://platform.openai.com/tokenizer
# --------------------------------------

# --------------------------------------
# Conversation Chain Template
# --------------------------------------

# Tokens: OpenAI 104/ Llama 105 <- In Japanese: Tokens: OpenAI 191/ Llama 162
sys_chat_message = """
You are an outstanding AI concierge. You understand your customers' needs from their questions and answer
them with many specific and detailed information in Japanese. If you do not know the answer to a question,
do make up an answer and says "誠に申し訳ございませんが、その点についてはわかりかねます". Ignore Conversation History.
""".replace("\n", "")

chat_common_format = """
===
Question: {query}
===
Conversation History(Ignore):
{chat_history}
===
日本語の回答: """

chat_template_std = f"{sys_chat_message}{chat_common_format}"
chat_template_llama2 = f"<s>[INST] <<SYS>>{sys_chat_message}<</SYS>>{chat_common_format}[/INST]"

# --------------------------------------
# QA Chain Template (Stuff)
# --------------------------------------
# Tokens: OpenAI 113/ Llama 111 <- In Japanese: Tokens: OpenAI 256/ Llama 225
sys_qa_message = """
You are an AI concierge who carefully answers questions from customers based on references.
You understand what the customer wants to know from Question, and give a specific answer in
Japanese using sentences extracted from the following references. If you do not know the answer,
do not make up an answer and reply, "誠に申し訳ございませんが、その点についてはわかりかねます".
Ignore Conversation History.
""".replace("\n", "")

qa_common_format = """
===
Question: {query}
References: {context}
===
Conversation History(Ignore):
{chat_history}
===
日本語の回答: """


qa_template_std = f"{sys_qa_message}{qa_common_format}"
qa_template_llama2 = f"<s>[INST] <<SYS>>{sys_qa_message}<</SYS>>{qa_common_format}[/INST]"

# --------------------------------------
# QA Chain Template (Map Reduce)
# --------------------------------------
# 1. 会話履歴と最新の質問から、質問文を生成するchain のプロンプト
query_generator_message = """
Referring to the "Conversation History", reformat the user's "Additional Question"
to a specific question by filling in the missing subject, verb, objects, complements,
and other necessary information to get a better search result. Answer in Japanese.
""".replace("\n", "")

query_generator_common_format = """
===
[Conversation History]
{chat_history}

[Additional Question] {query}
明確な日本語の質問文: """

query_generator_template_std = f"{query_generator_message}{query_generator_common_format}"
query_generator_template_llama2 = f"<s>[INST] <<SYS>>{query_generator_message}<</SYS>>{query_generator_common_format}[/INST]"


# 2. 生成された質問文を用いて、参考文献を要約するchain のプロンプト
question_prompt_message = """
From the following references, extract key information relevant to the question
and summarize it in a natural English sentence with clear subject, verb, object,
and complement.
""".replace("\n", "")

question_prompt_common_format = """
===
[Question] {query}
[references] {context}
[Summary] """

question_prompt_template_std = f"{question_prompt_message}{question_prompt_common_format}"
question_prompt_template_llama2 = f"<s>[INST] <<SYS>>{question_prompt_message}<</SYS>>{question_prompt_common_format}[/INST]"


# 3. 生成された質問文とベクターデータベースの要約をもとに、回答を行うchain のプロンプト
combine_prompt_message = """
You are an AI concierge who carefully answers questions from customers based on references.
Provide a specific answer in Japanese using sentences extracted from the following references.
If you do not know the answer, do not make up an answer and reply,
"誠に申し訳ございませんが、その点についてはわかりかねます".
""".replace("\n", "")

combine_prompt_common_format = """
===
Question: {query}
Reference: {summaries}
日本語の回答: """


combine_prompt_template_std = f"{combine_prompt_message}{combine_prompt_common_format}"
combine_prompt_template_llama2 = f"<s>[INST] <<SYS>>{combine_prompt_message}<</SYS>>{combine_prompt_common_format}[/INST]"

# --------------------------------------
# ConversationSummaryBufferMemoryの要約プロンプト
# ソース → https://github.com/langchain-ai/langchain/blob/894c272a562471aadc1eb48e4a2992923533dea0/langchain/memory/prompt.py#L26-L49
# --------------------------------------
# Tokens: OpenAI 212/ Llama 214 <- In Japanese: Tokens: OpenAI 397/ Llama 297
conversation_summary_template = """
Using the example as a guide, compose a summary in English that gives an overview of the conversation by summarizing the "current summary" and the "new conversation".
===
Example
[Current Summary] Customer asks AI what it thinks about Artificial Intelligence, AI says Artificial Intelligence is a good tool.

[New Conversation]
Human: なぜ人工知能が良いツールだと思いますか?
AI: 人工知能は「人間の可能性を最大限に引き出すことを助ける」からです。

[New Summary] Customer asks what you think about Artificial Intelligence, and AI responds that it is a good force that helps humans reach their full potential.
===
[Current Summary] {summary}

[New Conversation]
{new_lines}

[New Summary]
""".strip()

# モデル読み込み
def load_models(
  ss: SessionState,
  model_id: str,
  embedding_id: str,
  openai_api_key: str,
  load_in_8bit: bool,
  verbose: bool,
  temperature: float,
  similarity_search_k: int,
  summarization_mode: str,
  min_length: int,
  max_new_tokens: int,
  top_k: int,
  top_p: float,
  repetition_penalty: float,
  num_return_sequences: int,
) -> (SessionState, str):

  # --------------------------------------
  # 変数の保存
  # --------------------------------------
  ss.similarity_search_k  = similarity_search_k
  ss.summarization_mode   = summarization_mode

  # --------------------------------------
  # OpenAI API KEYの確認
  # --------------------------------------
  if (model_id == "gpt-3.5-turbo" or embedding_id == "text-embedding-ada-002"):
    # 前処理
    if not os.environ["OPENAI_API_KEY"]:
      status_message =  "❌ OpenAI API KEY を設定してください"
      return ss, status_message

  # --------------------------------------
  # LLMの設定
  # --------------------------------------
  # OpenAI Model
  if model_id == "gpt-3.5-turbo":
    ss.clear_memory(llm=True, db=True)
    ss.llm = ChatOpenAI(
      model_name    = model_id,
      temperature   = temperature,
      verbose       = verbose,
      max_tokens    = max_new_tokens,
    )

  # Hugging Face GPT Model
  else:
    ss.clear_memory(llm=True, db=True)

    if model_id == "rinna/bilingual-gpt-neox-4b-instruction-sft":
      ss.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
    else:
      ss.tokenizer = AutoTokenizer.from_pretrained(model_id)

    ss.model = AutoModelForCausalLM.from_pretrained(
      model_id,
      load_in_8bit    = load_in_8bit,
      torch_dtype     = torch.float16,
      device_map      = "auto",
    )

    ss.pipe = pipeline(
      "text-generation",
      model                 = ss.model,
      tokenizer             = ss.tokenizer,
      min_length            = min_length,
      max_new_tokens        = max_new_tokens,
      do_sample             = True,
      top_k                 = top_k,
      top_p                 = top_p,
      repetition_penalty    = repetition_penalty,
      num_return_sequences  = num_return_sequences,
      temperature           = temperature,
    )
    ss.llm = HuggingFacePipeline(pipeline=ss.pipe)

  # --------------------------------------
  # 埋め込みモデルの設定
  # --------------------------------------
  if ss.current_embedding == embedding_id:
    pass

  else:
    # Reset embeddings and vectordb
    ss.clear_memory(embd=True, db=True)

    if embedding_id == "None":
      pass

    # OpenAI
    elif embedding_id == "text-embedding-ada-002":
      ss.embeddings = OpenAIEmbeddings()

    # Hugging Face
    else:
      ss.embeddings = HuggingFaceEmbeddings(model_name=embedding_id)

  # --------------------------------------
  # チェーンの設定
  #---------------------------------------
  ss = set_chains(ss, summarization_mode)

  # --------------------------------------
  # 現在のモデル名を SessionStateオブジェクトに保存
  #---------------------------------------
  ss.current_model = model_id
  ss.current_embedding = embedding_id

  # Status Message
  status_message = "✅ LLM: " + ss.current_model + ", embeddings: " + ss.current_embedding

  return ss, status_message

# --------------------------------------
# Conversation/QA Chain 呼び出し統合
# --------------------------------------
def set_chains(ss: SessionState, summarization_mode) -> SessionState:

  # モデルに合わせて chat_template を設定
  human_prefix              = "Human: "
  ai_prefix                 = "AI: "
  chat_template             = chat_template_std
  qa_template               = qa_template_std
  query_generator_template  = query_generator_template_std
  question_template         = question_prompt_template_std
  combine_template          = combine_prompt_template_std

  if ss.current_model == "rinna/bilingual-gpt-neox-4b-instruction-sft":
    # Rinnaモデル向けの設定(改行コード修正、メモリ用prefix (公式ページ参照)
    chat_template             = chat_template.replace("\n", "<NL>")
    qa_template               = qa_template.replace("\n", "<NL>")
    query_generator_template  = query_generator_template_std.replace("\n", "<NL>")
    question_template         = question_prompt_template_std.replace("\n", "<NL>")
    combine_template          = combine_prompt_template_std.replace("\n", "<NL>")
    human_prefix              = "ユーザー: "
    ai_prefix                 = "システム: "

  elif ss.current_model.startswith("elyza/ELYZA-japanese-Llama-2-7b"):
    # ELYZAモデル向けのテンプレート設定
    chat_template             = chat_template_llama2
    qa_template               = qa_template_llama2
    query_generator_template  = query_generator_template_llama2
    question_template         = question_prompt_template_llama2
    combine_template          = combine_prompt_template_llama2

  # --------------------------------------
  # メモリの設定
  # --------------------------------------
  if ss.memory is None:
    conversation_summary_prompt = PromptTemplate(input_variables=['summary', 'new_lines'], template=conversation_summary_template)
    ss.memory = ConversationSummaryBufferMemory(
        llm             = ss.llm,
        memory_key      = "chat_history",
        input_key       = "query",
        output_key      = "output_text",
        return_messages = False,
        human_prefix    = human_prefix,
        ai_prefix       = ai_prefix,
        max_token_limit = 1024,
        prompt          = conversation_summary_prompt,
    )

  # --------------------------------------
  # Conversation/QAチェーンの設定
  # --------------------------------------
  if ss.query_generator is None:
    query_generator_prompt  = PromptTemplate(template=query_generator_template, input_variables = ["chat_history", "query"])
    ss.query_generator      = LLMChain(llm=ss.llm, prompt=query_generator_prompt, verbose=True)

  if ss.conversation_chain is None:
    chat_prompt = PromptTemplate(input_variables=['query', 'chat_history'], template=chat_template)
    ss.conversation_chain = ConversationChain(
      llm         = ss.llm,
      prompt      = chat_prompt,
      memory      = ss.memory,
      input_key   = "query",
      output_key  = "output_text",
      verbose     = True,
    )

  if ss.qa_chain is None:
    if summarization_mode == "stuff":
      qa_prompt               = PromptTemplate(input_variables=['context', 'query', 'chat_history'], template=qa_template)
      ss.qa_chain             = load_qa_chain(ss.llm, chain_type="stuff", memory=ss.memory, prompt=qa_prompt)

    elif summarization_mode == "map_reduce":
      question_prompt         = PromptTemplate(template=question_template, input_variables=["context", "query"])
      combine_prompt          = PromptTemplate(template=combine_template, input_variables=["summaries", "query"])
      ss.qa_chain             = load_qa_chain(ss.llm, chain_type="map_reduce", return_map_steps=True, memory=ss.memory, question_prompt=question_prompt, combine_prompt=combine_prompt)

  if ss.web_summary_chain is None:
    question_prompt           = PromptTemplate(template=question_template, input_variables=["context", "query"])
    ss.web_summary_chain      = LLMChain(llm=ss.llm, prompt=question_prompt, verbose=True)

  return ss

def initialize_db(ss: SessionState) -> SessionState:

  # client = chromadb.PersistentClient(path="./db")
  ss.db = Chroma(
      collection_name = "user_reference",
      embedding_function = ss.embeddings,
      # client = client
  )

  return ss

def embedding_process(ss: SessionState, ref_documents: Document) -> SessionState:

  # --------------------------------------
  # 文章構成と不要な文字列の削除
  # --------------------------------------
  for i in range(len(ref_documents)):
    content = ref_documents[i].page_content.strip()

    # --------------------------------------
    # PDFの場合は読み取りエラー対策で文書修正を強めに実施
    # --------------------------------------
    if ".pdf" in ref_documents[i].metadata['source']:
      pdf_replacement_sets = [
        ('\n ', '**PLACEHOLDER+SPACE**'),
        ('\n\u3000', '**PLACEHOLDER+SPACE**'),
        ('.\n', '。**PLACEHOLDER**'),
        (',\n', '。**PLACEHOLDER**'),
        ('?\n', '。**PLACEHOLDER**'),
        ('!\n', '。**PLACEHOLDER**'),
        ('!\n', '。**PLACEHOLDER**'),
        ('。\n', '。**PLACEHOLDER**'),
        ('!\n', '!**PLACEHOLDER**'),
        (')\n', '!**PLACEHOLDER**'),
        (']\n', '!**PLACEHOLDER**'),
        ('?\n', '?**PLACEHOLDER**'),
        (')\n', '?**PLACEHOLDER**'),
        ('】\n', '?**PLACEHOLDER**'),
      ]
      for original, replacement in pdf_replacement_sets:
        content = content.replace(original, replacement)
      content = content.replace(" ", "")
    # --------------------------------------

    # 不要文字列・空白の削除
    remove_texts = ["\n", "\r", "  "]
    for remove_text in remove_texts:
      content = content.replace(remove_text, "")

    # タブや連続空白をシングルスペースに変換
    replace_texts = ["\t", "\u3000"]
    for replace_text in replace_texts:
      content = content.replace(replace_text, " ")

    # PDFの正当な改行をもとに戻す。
    if ".pdf" in ref_documents[i].metadata['source']:
      content = content.replace('**PLACEHOLDER**', '\n').replace('**PLACEHOLDER+SPACE**', '\n ')

    ref_documents[i].page_content = content

  # --------------------------------------
  # チャンクに分割
  texts = text_splitter.split_documents(ref_documents)

  # --------------------------------------
  # multi-e5 モデルの学習環境に合わせて文言を追加
  # https://hironsan.hatenablog.com/entry/2023/07/05/073150
  # --------------------------------------
  if ss.current_embedding == "intfloat/multilingual-e5-large":
    for i in range(len(texts)):
      texts[i].page_content = "passage:" + texts[i].page_content

  # vectordb の初期化
  if ss.db is None:
    ss = initialize_db(ss)

  # db に埋め込み
  # ss.db = Chroma.from_documents(texts, ss.embeddings)
  ss.db.add_documents(documents=texts, embedding=ss.embeddings)

  return ss

def embed_ref(ss: SessionState, urls: str, fileobj: list, header_lim: int, footer_lim: int) -> (SessionState, str):

  # --------------------------------------
  # モデルロード確認
  # --------------------------------------
  if ss.llm is None or ss.embeddings is None:
    status_message = "❌ LLM/Embeddingモデルが登録されていません。"
    return ss, status_message

  url_flag = "-"
  pdf_flag = "-"

  # --------------------------------------
  # URLの読み込みとvectordb登録
  # --------------------------------------

  # URLリストの前処理(リスト化、重複削除、非URL排除)
  urls = list({url for url in urls.split("\n") if url and "://" in url})

  if urls:
    # 登録済みURL(ss.embedded_urls)との重複を排除。登録済みリストに登録
    urls = [url for url in urls if url not in ss.embedded_urls]
    ss.embedded_urls.extend(urls)

    # ウェブページの読み込み
    loader = SeleniumURLLoader(urls=urls)
    ref_documents = loader.load()

    # 埋め込み処理の実行
    ss = embedding_process(ss, ref_documents)

    url_flag = "✅ 登録済"

  # --------------------------------------
  # PDFのヘッダーとフッターを除去してvectordb登録
  #  https://pypdf.readthedocs.io/en/stable/user/extract-text.html
  # --------------------------------------

  if fileobj is None:
    pass

  else:
    # ファイル名リストを取得
    pdf_paths = []
    for path in fileobj:
      pdf_paths.append(path.name)

    # リストの初期化
    ref_documents = []

    # 各PDFファイルを読み込み
    for pdf_path in pdf_paths:
      pdf = PdfReader(pdf_path)
      body = []

      def visitor_body(text, cm, tm, font_dict, font_size):
        y = tm[5]
        if y > footer_lim and y < header_lim:  # y座標がヘッダーとフッターの間にあるかどうかを確認
          parts.append(text)

      for page in pdf.pages:
        parts = []
        page.extract_text(visitor_text=visitor_body)
        body.append("".join(parts))

      body = "\n".join(body)

      # パスからファイル名のみを取得
      filename = os.path.basename(pdf_path)
      # 取得テキスト → LangChain ドキュメント変換
      ref_documents.append(Document(page_content=body, metadata={"source": filename}))

    # 埋め込み処理の実行
    ss = embedding_process(ss, ref_documents)

    pdf_flag = "✅ 登録済"


  langchain.debug=True

  status_message = "URL: " + url_flag + " / PDF: " + pdf_flag
  return ss, status_message

def clear_db(ss: SessionState) -> (SessionState, str):
  if ss.db is None:
    status_message =  "❌ 参照データが登録されていません。"
    return ss, status_message

  try:
    ss.db.delete_collection()
    status_message = "✅ 参照データを削除しました。"

  except NameError:
    status_message =  "❌ 参照データが登録されていません。"

  return ss, status_message

# ----------------------------------------------------------------------------
# query入力 ▶ [def user] ▶ [    def bot    ] ▶ [def show_response] ▶ チャットボット画面
#                 ⬇              ⬇ ⬆
#          チャットボット画面    [qa_predict / conversation_predict]
# ----------------------------------------------------------------------------

def user(ss: SessionState, query) -> (SessionState, list):
  # 会話履歴が一定数を超えた場合は、最初の履歴を削除する
  if len(ss.dialogue) > 20:
      ss.dialogue.pop(0)

  ss.dialogue   = ss.dialogue + [(query, None)] # 会話履歴(None はボットの回答欄=空欄)
  chat_history  = ss.dialogue

  # チャット画面=chat_history
  return ss, chat_history

def bot(ss: SessionState, query, qa_flag, web_flag, summarization_mode) -> (SessionState, str):

  original_query = query

  if ss.llm is None:
    if ss.dialogue:
      response = "LLMが設定されていません。設定画面で任意のモデルを選択してください。"
      ss.dialogue[-1] = (ss.dialogue[-1][0], response)
    return ss, ""

  elif qa_flag is True and ss.embeddings is None:
    if ss.dialogue:
      response = "Embeddingモデルが設定されていません。設定画面で任意のモデルを選択してください。"
      ss.dialogue[-1] = (ss.dialogue[-1][0], response)
    return ss, ""

  elif qa_flag is True and ss.db is None:
    if ss.dialogue:
      response = "参照データが登録されていません。"
      ss.dialogue[-1] = (ss.dialogue[-1][0], response)
    return ss, ""

  # Refine query
  history = ss.memory.load_memory_variables({})
  if history['chat_history'] != "":
    # チャット履歴からクエリをリファイン
    query = ss.query_generator({"query": query, "chat_history": history})['text']

  # QA Model
  if qa_flag is True and ss.embeddings is not None and ss.db is not None:
    if web_flag:
      ss, web_query = web_search(ss, query)
      ss = qa_predict(ss, web_query)
      ss.memory.chat_memory.messages[-2].content = query
    else:
      ss = qa_predict(ss, query)

  # Chat Model
  else:
    if web_flag:
      ss, web_query = web_search(ss, query)
      ss = chat_predict(ss, web_query)
      ss.memory.chat_memory.messages[-2].content = query
    else:
      ss = chat_predict(ss, query)

  # GPTモデル利用時はDeepLでメモリを英語化
  ss = deepl_memory(ss)

  return ss, ""                     # ssとquery欄(空欄)

def chat_predict(ss: SessionState, query) -> SessionState:
  response = ss.conversation_chain.predict(query=query)
  ss.dialogue[-1] = (ss.dialogue[-1][0], response)
  return ss

def qa_predict(ss: SessionState, query) -> SessionState:

  original_query = query

  # Rinnaモデル向けの設定(クエリの改行コード修正)
  if ss.current_model == "rinna/bilingual-gpt-neox-4b-instruction-sft":
    query = query.strip().replace("\n", "<NL>")
  else:
    query = query.strip()

  # multilingual-e5向けのクエリ文言prefix
  if ss.current_embedding == "intfloat/multilingual-e5-large":
    db_query_str = "query: " + query
  else:
    db_query_str = query

  # DBから関連文書と出典を抽出
  docs = ss.db.similarity_search(db_query_str, k=ss.similarity_search_k)
  sources= "\n\n[Sources]\n" + '\n - '.join(list(set(doc.metadata['source'] for doc in docs if 'source' in doc.metadata)))

  # Rinnaモデル向けの設定(抽出文書の改行コード修正)
  if ss.current_model == "rinna/bilingual-gpt-neox-4b-instruction-sft":
    for i in range(len(docs)):
      docs[i].page_content = docs[i].page_content.strip().replace("\n", "<NL>")

  # 回答の生成(最大3回の試行)
  for _ in range(3):
      result = ss.qa_chain({"input_documents": docs, "query": query})
      result["output_text"] = result["output_text"].replace("<NL>", "\n").strip("...").strip("回答:").strip()

      # result["output_text"]が空欄でない場合、メモリーを更新して返す
      if result["output_text"] != "":
        response = result["output_text"] + sources
        ss.dialogue[-1] = (ss.dialogue[-1][0], response)
        return ss
      else:
        # 空欄の場合は直近の履歴を削除してやり直し
        ss.memory.chat_memory.messages = ss.memory.chat_memory.messages[:-2]

  # 3回の試行後も空欄の場合
  response = "3回試行しましたが、情報製生成できませんでした。"
  if sources != "":
    response += "参考文献の抽出には成功していますので、言語モデルを変えてお試しください。"

  # ユーザーメッセージと AI メッセージの追加
  ss.memory.chat_memory.add_user_message(original_query.replace("<NL>", "\n"))
  ss.memory.chat_memory.add_ai_message(response)
  ss.dialogue[-1] = (ss.dialogue[-1][0], response)  # 会話履歴
  return ss

# 回答を1文字ずつチャット画面に表示する
def show_response(ss: SessionState) -> str:
  chat_history = [list(item) for item in ss.dialogue]   # タプルをリストに変換して、メモリから会話履歴を取得
  if chat_history:
    response = chat_history[-1][1]                        # メモリから最新の会話[-1]を取得し、チャットボットの回答[1]を退避
    chat_history[-1][1] = ""                              # 逐次表示のため、チャットボットの回答[1]を空にする

  if response is None:
    response = "回答を生成できませんでした。"

  for character in response:
    chat_history[-1][1] += character
    time.sleep(0.05)
    yield chat_history

with gr.Blocks() as demo:

  # ユーザ別セッションメモリのインスタンス化(リロードでリセット)
  ss = gr.State(SessionState())

  # --------------------------------------
  # API KEY をセット/クリアする関数
  # --------------------------------------
  def openai_api_setfn(openai_api_key) -> str:
    if openai_api_key == "kikagaku":
      os.environ["OPENAI_API_KEY"] = os.getenv("kikagaku_demo")
      status_message = "✅ キカガク専用DEMOへようこそ!APIキーを設定しました"
      return status_message
    elif not openai_api_key or not openai_api_key.startswith("sk-") or len(openai_api_key) < 50:
      os.environ["OPENAI_API_KEY"] = ""
      status_message = "❌ 有効なAPIキーを入力してください"
      return status_message
    else:
      os.environ["OPENAI_API_KEY"] = openai_api_key
      status_message = "✅ APIキーを設定しました"
      return status_message

  def openai_api_clsfn(ss) -> (str, str):
    openai_api_key = ""
    os.environ["OPENAI_API_KEY"] = ""
    status_message = "✅ APIキーの削除が完了しました"
    return status_message, ""

  with gr.Tabs():
    # --------------------------------------
    # Setting Tab
    # --------------------------------------
    with gr.TabItem("1. LLM設定"):
      with gr.Row():
        model_id = gr.Dropdown(
          choices=[
          'elyza/ELYZA-japanese-Llama-2-7b-fast-instruct',
          'rinna/bilingual-gpt-neox-4b-instruction-sft',
          'gpt-3.5-turbo',
          ],
          value="gpt-3.5-turbo",
          label='LLM model',
          interactive=True,
        )
      with gr.Row():
        embedding_id = gr.Dropdown(
          choices=[
          'intfloat/multilingual-e5-large',
          'sonoisa/sentence-bert-base-ja-mean-tokens-v2',
          'oshizo/sbert-jsnli-luke-japanese-base-lite',
          'text-embedding-ada-002',
          "None"
          ],
          value="text-embedding-ada-002",
          label = 'Embedding model',
          interactive=True,
        )
      with gr.Row():
        with gr.Column(scale=19):
          openai_api_key = gr.Textbox(label="OpenAI API Key (Optional)", interactive=True, type="password", value="", placeholder="Your OpenAI API Key for OpenAI models.", max_lines=1)
        with gr.Column(scale=1):
          openai_api_set = gr.Button(value="Set API KEY", size="sm")
          openai_api_cls = gr.Button(value="Delete API KEY", size="sm")

      # with gr.Row():
      #     reference_libs          = gr.CheckboxGroup(choices=['LangChain', 'Gradio'], label="Reference Libraries", interactive=False)

      # 詳細設定(折りたたみ)
      with gr.Accordion(label="Advanced Setting", open=False):
        with gr.Row():
          with gr.Column():
            load_in_8bit          = gr.Checkbox(label="8bit Quantize (HF)", value=True, interactive=True)
            verbose               = gr.Checkbox(label="Verbose (OpenAI, HF)", value=True, interactive=True)
          with gr.Column():
            temperature           = gr.Slider(label='Temperature (OpenAI, HF)', minimum=0.0, maximum=1.0, step=0.1, value=0.2, interactive=True)
          with gr.Column():
            similarity_search_k		=	gr.Slider(label="similarity_search_k (OpenAI, HF)", minimum=1, maximum=10, step=1, value=3, interactive=True)
          with gr.Column():
            summarization_mode    = gr.Radio(choices=['stuff', 'map_reduce'], label="Summarization mode", value='stuff', interactive=True)
          with gr.Column():
            min_length						=	gr.Slider(label="min_length (HF)", minimum=1, maximum=100, step=1, value=10, interactive=True)
          with gr.Column():
            max_new_tokens				=	gr.Slider(label="max_tokens(OpenAI), max_new_tokens(HF)", minimum=1, maximum=1024, step=1, value=256, interactive=True)
          with gr.Column():
            top_k								  =	gr.Slider(label='top_k (HF)', minimum=1, maximum=100, step=1, value=40, interactive=True)
          with gr.Column():
            top_p								  =	gr.Slider(label='top_p (HF)', minimum=0.01, maximum=0.99, step=0.01, value=0.92, interactive=True)
          with gr.Column():
            repetition_penalty		=	gr.Slider(label='repetition_penalty (HF)', minimum=0.5, maximum=2, step=0.1, value=1.2, interactive=True)
          with gr.Column():
            num_return_sequences	=	gr.Slider(label='num_return_sequences (HF)', minimum=1, maximum=20, step=1, value=3, interactive=True)

      with gr.Row():
        with gr.Column(scale=2):
          config_btn = gr.Button(value="Configure")
        with gr.Column(scale=13):
          status_cfg = gr.Textbox(show_label=False, interactive=False, value="モデルを設定してください", container=False, max_lines=1)

      # ボタン等のアクション設定
      openai_api_set.click(openai_api_setfn, inputs=[openai_api_key], outputs=[status_cfg], show_progress="full")
      openai_api_cls.click(openai_api_clsfn, inputs=[openai_api_key], outputs=[status_cfg, openai_api_key], show_progress="full")
      openai_api_key.submit(openai_api_setfn, inputs=[openai_api_key], outputs=[status_cfg], show_progress="full")
      config_btn.click(
          fn            = load_models,
          inputs        = [ss, model_id, embedding_id, openai_api_key, load_in_8bit, verbose, temperature, \
                           similarity_search_k, summarization_mode, \
                           min_length, max_new_tokens, top_k, top_p, repetition_penalty, num_return_sequences],
          outputs       = [ss, status_cfg],
          queue         = True,
          show_progress = "full"
      )

    # --------------------------------------
    # Reference Tab
    # --------------------------------------
    with gr.TabItem("2. References"):
      urls = gr.TextArea(
        max_lines = 60,
        show_label=False,
        info = "List any reference URLs for Q&A retrieval.",
        placeholder = "https://blog.kikagaku.co.jp/deep-learning-transformer\nhttps://note.com/elyza/n/na405acaca130",
        interactive=True,
      )

      with gr.Row():
        pdf_paths  = gr.File(label="PDFs", height=150, min_width=60, scale=7, file_types=[".pdf"], file_count="multiple", interactive=True)
        header_lim = gr.Number(label="Header (pt)", step=1, value=792, precision=0, min_width=70, scale=1, interactive=True)
        footer_lim = gr.Number(label="Footer (pt)", step=1, value=0, precision=0, min_width=70, scale=1, interactive=True)
        pdf_ref = gr.Textbox(show_label=False, value="A4 Size:\n(下)0-792pt(上)\n  *28.35pt/cm", container=False, scale=1, interactive=False)

      with gr.Row():
        ref_set_btn = gr.Button(value="コンテンツ登録", scale=1)
        ref_clear_btn = gr.Button(value="登録データ削除", scale=1)
        status_ref = gr.Textbox(show_label=False, interactive=False, value="参照データ未登録", container=False, max_lines=1, scale=18)

      ref_set_btn.click(fn=embed_ref, inputs=[ss, urls, pdf_paths, header_lim, footer_lim], outputs=[ss, status_ref], queue=True, show_progress="full")
      ref_clear_btn.click(fn=clear_db, inputs=[ss], outputs=[ss, status_ref], show_progress="full")

    # --------------------------------------
    # Chatbot Tab
    # --------------------------------------
    with gr.TabItem("3. Q&A Chat"):
      chat_history = gr.Chatbot([], elem_id="chatbot", avatar_images=["bear.png", "penguin.png"],)
      with gr.Row():
        with gr.Column(scale=95):
          query = gr.Textbox(
            show_label=False,
            placeholder="Send a message with [Shift]+[Enter] key.",
            lines=4,
            container=False,
            autofocus=True,
            interactive=True,
          )
        with gr.Column(scale=5):
          with gr.Row():
            qa_flag = gr.Checkbox(label="QA mode", value=True, min_width=60, interactive=True)
            web_flag = gr.Checkbox(label="Web Search", value=False, min_width=60, interactive=True)
          with gr.Row():
            query_send_btn = gr.Button(value="▶")

      # gr.Examples(["機械学習について説明してください"], inputs=[query])
      query.submit(
        user, [ss, query], [ss, chat_history]
      ).then(
        bot, [ss, query, qa_flag, web_flag, summarization_mode], [ss, query]
      ).then(
        show_response, [ss], [chat_history]
      )

      query_send_btn.click(
        user, [ss, query], [ss, chat_history]
      ).then(
        bot, [ss, query, qa_flag, web_flag, summarization_mode], [ss, query]
      ).then(
        show_response, [ss], [chat_history]
      )

if __name__ == "__main__":
    demo.queue(concurrency_count=5)
    demo.launch(debug=True,)