File size: 4,605 Bytes
6a53dd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from src.modeling_t5 import T5ForSequenceClassification
import selfies as sf
import pandas as pd
from transformers import AutoTokenizer, pipeline
from chemistry_adapters.amino_acids import AminoAcidAdapter
from tqdm import tqdm
import gradio as gr


class xBitterT5_predictor:
    def __init__(
        self,
        xBitterT5_640_ckpt="cbbl-skku-org/xBitterT5-640",
        xBitterT5_720_ckpt="cbbl-skku-org/xBitterT5-720",
        device="cpu",
    ):
        self.xBitterT5_640_ckpt = xBitterT5_640_ckpt
        self.xBitterT5_720_ckpt = xBitterT5_720_ckpt
        self.device = device

        self.tokenizer = AutoTokenizer.from_pretrained(xBitterT5_640_ckpt)
        self.xBitterT5_640 = self.load_model(xBitterT5_640_ckpt)
        self.xBitterT5_720 = self.load_model(xBitterT5_720_ckpt)

        self.classifier_640 = pipeline(
            "text-classification",
            model=self.xBitterT5_640,
            tokenizer=self.tokenizer,
            device=self.device,
        )
        self.classifier_720 = pipeline(
            "text-classification",
            model=self.xBitterT5_720,
            tokenizer=self.tokenizer,
            device=self.device,
        )

    def load_model(self, ckpt):
        model = T5ForSequenceClassification.from_pretrained(ckpt)
        model.eval()
        model.to(self.device)
        return model

    def convert_sequence_to_smiles(self, sequence):
        adapter = AminoAcidAdapter()
        return adapter.convert_amino_acid_sequence_to_smiles(sequence)

    def conver_smiles_to_selfies(self, smiles):
        return sf.encoder(smiles)

    def predict(
        self,
        input_dict,
        model_type="xBitterT5-720",
        batch_size=4,
    ):
        assert model_type in ["xBitterT5-640", "xBitterT5-720"]
        df = pd.DataFrame(
            {"id": list(input_dict.keys()), "sequence": list(input_dict.values())}
        )

        df["smiles"] = df.apply(
            lambda row: self.convert_sequence_to_smiles(row["sequence"]),
            axis=1,
        )
        df["selfies"] = df.apply(
            lambda row: self.conver_smiles_to_selfies(row["smiles"]),
            axis=1,
        )

        df["sequence"] = df.apply(
            lambda row: "<bop>"
            + "".join("<p>" + aa for aa in row["sequence"])
            + "<eop>",
            axis=1,
        )
        df["selfies"] = df.apply(lambda row: "<bom>" + row["selfies"] + "<eom>", axis=1)
        df["text"] = df["sequence"] + df["selfies"]

        text_inputs = df["text"].tolist()

        if model_type == "xBitterT5-640":
            classifier = self.classifier_640
        else:
            classifier = self.classifier_720

        result = []
        for i in tqdm(range(0, len(text_inputs), batch_size)):
            batch = text_inputs[i : i + batch_size]
            result.extend(classifier(batch))

        y_pred, y_prob = [], []
        for pred in result:
            if pred["label"] == "bitter":
                y_prob.append(pred["score"])
                y_pred.append(1)
            else:
                y_prob.append(1 - pred["score"])
                y_pred.append(0)

        return {i: [y_prob[j], y_pred[j]] for j, i in enumerate(df["id"].tolist())}


predictor = xBitterT5_predictor()


def process_fasta(fasta_text):
    """
    Processes the input FASTA format text into a dictionary {id: sequence}.
    """
    fasta_dict = {}
    current_id = None
    current_sequence = []

    for line in fasta_text.strip().split("\n"):
        line = line.strip()
        if line.startswith(">"):  # Header line
            if current_id:
                fasta_dict[current_id] = "".join(current_sequence)
            current_id = line[1:]  # Remove '>'
            current_sequence = []
        else:
            current_sequence.append(line)

    # Add the last sequence
    if current_id:
        fasta_dict[current_id] = "".join(current_sequence)

    return fasta_dict


# Create a Gradio interface
def gradio_process_fasta(fasta_text):
    """
    Wrapper for Gradio to process the FASTA text.
    """
    fasta_dict = process_fasta(fasta_text)
    result = predictor.predict(fasta_dict)
    return result


interface = gr.Interface(
    fn=gradio_process_fasta,
    inputs=gr.Textbox(
        label="Enter FASTA format text", lines=10, placeholder=">id1\nATGC\n>id2\nCGTA"
    ),
    outputs=gr.JSON(label="Processed FASTA Dictionary with Probabilities and Classes"),
    title="FASTA to Dictionary with Probabilities and Classes",
    description=("Enter a FASTA-formatted text"),
)
# Launch the Gradio app
interface.launch()