Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch T5 model.""" | |
import copy | |
import math | |
import os | |
import warnings | |
from typing import List, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers.activations import ACT2FN | |
from transformers.cache_utils import ( | |
Cache, | |
DynamicCache, | |
EncoderDecoderCache, | |
StaticCache, | |
) | |
from transformers.generation import GenerationMixin | |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter | |
from transformers.modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPastAndCrossAttentions, | |
Seq2SeqLMOutput, | |
Seq2SeqModelOutput, | |
Seq2SeqQuestionAnsweringModelOutput, | |
Seq2SeqSequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.pytorch_utils import ( | |
ALL_LAYERNORM_LAYERS, | |
find_pruneable_heads_and_indices, | |
prune_linear_layer, | |
) | |
from transformers.utils import ( | |
DUMMY_INPUTS, | |
DUMMY_MASK, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_torch_fx_proxy, | |
is_torchdynamo_compiling, | |
logging, | |
replace_return_docstrings, | |
) | |
from transformers.utils.model_parallel_utils import ( | |
assert_device_map, | |
get_device_map, | |
) | |
from transformers.models.t5.configuration_t5 import T5Config | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "T5Config" | |
_CHECKPOINT_FOR_DOC = "google-t5/t5-small" | |
#################################################### | |
# This dict contains ids and associated url | |
# for the pretrained weights provided with the models | |
#################################################### | |
#################################################### | |
# This is a conversion method from TF 1.0 to PyTorch | |
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28 | |
#################################################### | |
def load_tf_weights_in_t5(model, config, tf_checkpoint_path): | |
"""Load tf checkpoints in a pytorch model.""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
logger.error( | |
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
tf_weights = {} | |
for name, shape in init_vars: | |
logger.info(f"Loading TF weight {name} with shape {shape}") | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
tf_weights[name] = array | |
for txt_name in names: | |
name = txt_name.split("/") | |
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
# which are not required for using pretrained model | |
if any( | |
n | |
in [ | |
"adam_v", | |
"adam_m", | |
"AdamWeightDecayOptimizer", | |
"AdamWeightDecayOptimizer_1", | |
"global_step", | |
] | |
for n in name | |
): | |
logger.info(f"Skipping {'/'.join(name)}") | |
tf_weights.pop(txt_name, None) | |
continue | |
if "_slot_" in name[-1]: | |
logger.info(f"Skipping {'/'.join(name)}") | |
tf_weights.pop(txt_name, None) | |
continue | |
pointer = model | |
array = tf_weights[txt_name] | |
for m_name in name: | |
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | |
scope_names = re.split(r"_(\d+)", m_name) | |
else: | |
scope_names = [m_name] | |
if scope_names[0] in ["kernel", "scale", "embedding"]: | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "self_attention": | |
pointer = getattr(pointer, "layer") | |
pointer = pointer[0] | |
elif scope_names[0] == "enc_dec_attention": | |
pointer = getattr(pointer, "layer") | |
pointer = pointer[1] | |
elif scope_names[0] == "dense_relu_dense": | |
pointer = getattr(pointer, "layer") | |
pointer = pointer[2] | |
elif scope_names[0] == "rms_norm": | |
if hasattr(pointer, "layer_norm"): | |
pointer = getattr(pointer, "layer_norm") | |
elif hasattr(pointer, "final_layer_norm"): | |
pointer = getattr(pointer, "final_layer_norm") | |
elif scope_names[0] == "scale": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
pointer = getattr(pointer, "bias") | |
elif scope_names[0] == "squad": | |
pointer = getattr(pointer, "classifier") | |
elif scope_names[0] == "decoder" and name[1] == "logits": | |
continue | |
elif scope_names[0] == "logits": | |
pointer = getattr(pointer, "lm_head") | |
elif ( | |
scope_names[0] == "wi" | |
and len(scope_names) > 1 | |
and scope_names[1].isdigit() | |
): | |
pointer = getattr(pointer, f"wi_{scope_names[1]}") | |
continue | |
else: | |
try: | |
pointer = getattr(pointer, scope_names[0]) | |
except AttributeError: | |
logger.info(f"Skipping {'/'.join(name)}") | |
continue | |
if len(scope_names) >= 2: | |
num = int(scope_names[1]) | |
pointer = pointer[num] | |
if scope_names[0] not in ["kernel", "scale", "embedding"]: | |
pointer = getattr(pointer, "weight") | |
if scope_names[0] != "embedding": | |
logger.info(f"Transposing numpy weight of shape {array.shape} for {name}") | |
array = np.transpose(array) | |
try: | |
if pointer.shape != array.shape: | |
raise ValueError( | |
f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" | |
) | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
logger.info(f"Initialize PyTorch weight {name}") | |
pointer.data = torch.from_numpy(array.astype(np.float32)) | |
tf_weights.pop(txt_name, None) | |
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") | |
return model | |
#################################################### | |
# PyTorch Models are constructed by sub-classing | |
# - torch.nn.Module for the layers and | |
# - PreTrainedModel for the models (it-self a sub-class of nn.Module) | |
#################################################### | |
PARALLELIZE_DOCSTRING = r""" | |
This is an experimental feature and is a subject to change at a moment's notice. | |
Uses a device map to distribute attention modules of the model across several devices. If no device map is given, | |
it will evenly distribute blocks across all devices. | |
Args: | |
device_map (`Dict[int, list]`, *optional*): | |
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always | |
automatically mapped to the first device (for esoteric reasons). That means that the first device should | |
have fewer attention modules mapped to it than other devices. For reference, the t5 models have the | |
following number of attention modules: | |
- google-t5/t5-small: 6 | |
- google-t5/t5-base: 12 | |
- google-t5/t5-large: 24 | |
- google-t5/t5-3b: 24 | |
- google-t5/t5-11b: 24 | |
Example: | |
```python | |
# Here is an example of a device map on a machine with 4 GPUs using google-t5/t5-3b, which has a total of 24 attention modules: | |
model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b") | |
device_map = { | |
0: [0, 1, 2], | |
1: [3, 4, 5, 6, 7, 8, 9], | |
2: [10, 11, 12, 13, 14, 15, 16], | |
3: [17, 18, 19, 20, 21, 22, 23], | |
} | |
model.parallelize(device_map) | |
``` | |
""" | |
DEPARALLELIZE_DOCSTRING = r""" | |
Moves the model to cpu from a model parallel state. | |
Example: | |
```python | |
# On a 4 GPU machine with google-t5/t5-3b: | |
model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b") | |
device_map = { | |
0: [0, 1, 2], | |
1: [3, 4, 5, 6, 7, 8, 9], | |
2: [10, 11, 12, 13, 14, 15, 16], | |
3: [17, 18, 19, 20, 21, 22, 23], | |
} | |
model.parallelize(device_map) # Splits the model across several devices | |
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() | |
``` | |
""" | |
class T5LayerNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
Construct a layernorm module in the T5 style. No bias and no subtraction of mean. | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean | |
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated | |
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for | |
# half-precision inputs is done in fp32 | |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
# convert into half-precision if necessary | |
if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
hidden_states = hidden_states.to(self.weight.dtype) | |
return self.weight * hidden_states | |
try: | |
from apex.normalization import FusedRMSNorm | |
T5LayerNorm = FusedRMSNorm # noqa | |
logger.info( | |
"Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm" | |
) | |
except ImportError: | |
# using the normal T5LayerNorm | |
pass | |
except Exception: | |
logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm") | |
pass | |
ALL_LAYERNORM_LAYERS.append(T5LayerNorm) | |
class T5DenseActDense(nn.Module): | |
def __init__(self, config: T5Config): | |
super().__init__() | |
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = ACT2FN[config.dense_act_fn] | |
def forward(self, hidden_states): | |
hidden_states = self.wi(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
if ( | |
isinstance(self.wo.weight, torch.Tensor) | |
and hidden_states.dtype != self.wo.weight.dtype | |
and self.wo.weight.dtype != torch.int8 | |
): | |
hidden_states = hidden_states.to(self.wo.weight.dtype) | |
hidden_states = self.wo(hidden_states) | |
return hidden_states | |
class T5DenseGatedActDense(nn.Module): | |
def __init__(self, config: T5Config): | |
super().__init__() | |
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = ACT2FN[config.dense_act_fn] | |
def forward(self, hidden_states): | |
hidden_gelu = self.act(self.wi_0(hidden_states)) | |
hidden_linear = self.wi_1(hidden_states) | |
hidden_states = hidden_gelu * hidden_linear | |
hidden_states = self.dropout(hidden_states) | |
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. | |
# See https://github.com/huggingface/transformers/issues/20287 | |
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` | |
if ( | |
isinstance(self.wo.weight, torch.Tensor) | |
and hidden_states.dtype != self.wo.weight.dtype | |
and self.wo.weight.dtype != torch.int8 | |
): | |
hidden_states = hidden_states.to(self.wo.weight.dtype) | |
hidden_states = self.wo(hidden_states) | |
return hidden_states | |
class T5LayerFF(nn.Module): | |
def __init__(self, config: T5Config): | |
super().__init__() | |
if config.is_gated_act: | |
self.DenseReluDense = T5DenseGatedActDense(config) | |
else: | |
self.DenseReluDense = T5DenseActDense(config) | |
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward(self, hidden_states): | |
forwarded_states = self.layer_norm(hidden_states) | |
forwarded_states = self.DenseReluDense(forwarded_states) | |
hidden_states = hidden_states + self.dropout(forwarded_states) | |
return hidden_states | |
class T5Attention(nn.Module): | |
def __init__( | |
self, | |
config: T5Config, | |
has_relative_attention_bias=False, | |
layer_idx: Optional[int] = None, | |
): | |
super().__init__() | |
self.is_decoder = config.is_decoder | |
self.has_relative_attention_bias = has_relative_attention_bias | |
self.relative_attention_num_buckets = config.relative_attention_num_buckets | |
self.relative_attention_max_distance = config.relative_attention_max_distance | |
self.d_model = config.d_model | |
self.key_value_proj_dim = config.d_kv | |
self.n_heads = config.num_heads | |
self.dropout = config.dropout_rate | |
self.inner_dim = self.n_heads * self.key_value_proj_dim | |
self.layer_idx = layer_idx | |
if layer_idx is None and self.is_decoder: | |
logger.warning_once( | |
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and " | |
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
# Mesh TensorFlow initialization to avoid scaling before softmax | |
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) | |
if self.has_relative_attention_bias: | |
self.relative_attention_bias = nn.Embedding( | |
self.relative_attention_num_buckets, self.n_heads | |
) | |
self.pruned_heads = set() | |
self.gradient_checkpointing = False | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads | |
) | |
# Prune linear layers | |
self.q = prune_linear_layer(self.q, index) | |
self.k = prune_linear_layer(self.k, index) | |
self.v = prune_linear_layer(self.v, index) | |
self.o = prune_linear_layer(self.o, index, dim=1) | |
# Update hyper params | |
self.n_heads = self.n_heads - len(heads) | |
self.inner_dim = self.key_value_proj_dim * self.n_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def _relative_position_bucket( | |
relative_position, bidirectional=True, num_buckets=32, max_distance=128 | |
): | |
""" | |
Adapted from Mesh Tensorflow: | |
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | |
Translate relative position to a bucket number for relative attention. The relative position is defined as | |
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | |
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | |
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | |
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | |
This should allow for more graceful generalization to longer sequences than the model has been trained on | |
Args: | |
relative_position: an int32 Tensor | |
bidirectional: a boolean - whether the attention is bidirectional | |
num_buckets: an integer | |
max_distance: an integer | |
Returns: | |
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | |
""" | |
relative_buckets = 0 | |
if bidirectional: | |
num_buckets //= 2 | |
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | |
relative_position = torch.abs(relative_position) | |
else: | |
relative_position = -torch.min( | |
relative_position, torch.zeros_like(relative_position) | |
) | |
# now relative_position is in the range [0, inf) | |
# half of the buckets are for exact increments in positions | |
max_exact = num_buckets // 2 | |
is_small = relative_position < max_exact | |
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
relative_position_if_large = max_exact + ( | |
torch.log(relative_position.float() / max_exact) | |
/ math.log(max_distance / max_exact) | |
* (num_buckets - max_exact) | |
).to(torch.long) | |
relative_position_if_large = torch.min( | |
relative_position_if_large, | |
torch.full_like(relative_position_if_large, num_buckets - 1), | |
) | |
relative_buckets += torch.where( | |
is_small, relative_position, relative_position_if_large | |
) | |
return relative_buckets | |
def compute_bias(self, query_length, key_length, device=None, cache_position=None): | |
"""Compute binned relative position bias""" | |
if device is None: | |
device = self.relative_attention_bias.weight.device | |
if cache_position is None: | |
context_position = torch.arange( | |
query_length, dtype=torch.long, device=device | |
)[:, None] | |
else: | |
context_position = cache_position[:, None].to(device) | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[ | |
None, : | |
] | |
relative_position = ( | |
memory_position - context_position | |
) # shape (query_length, key_length) | |
relative_position_bucket = self._relative_position_bucket( | |
relative_position, # shape (query_length, key_length) | |
bidirectional=(not self.is_decoder), | |
num_buckets=self.relative_attention_num_buckets, | |
max_distance=self.relative_attention_max_distance, | |
) | |
values = self.relative_attention_bias( | |
relative_position_bucket | |
) # shape (query_length, key_length, num_heads) | |
values = values.permute([2, 0, 1]).unsqueeze( | |
0 | |
) # shape (1, num_heads, query_length, key_length) | |
return values | |
def forward( | |
self, | |
hidden_states, | |
mask=None, | |
key_value_states=None, | |
position_bias=None, | |
past_key_value=None, | |
layer_head_mask=None, | |
query_length=None, | |
use_cache=False, | |
output_attentions=False, | |
cache_position=None, | |
): | |
""" | |
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). | |
""" | |
# Input is (batch_size, seq_length, dim) | |
# Mask is (batch_size, 1, 1, key_length) (non-causal encoder) or (batch_size, 1, seq_length, key_length) (causal decoder) | |
batch_size, seq_length = hidden_states.shape[:2] | |
# if key_value_states are provided this layer is used as a cross-attention layer for the decoder | |
is_cross_attention = key_value_states is not None | |
query_states = self.q(hidden_states) | |
query_states = query_states.view( | |
batch_size, -1, self.n_heads, self.key_value_proj_dim | |
).transpose(1, 2) | |
if past_key_value is not None: | |
is_updated = past_key_value.is_updated.get(self.layer_idx) | |
if is_cross_attention: | |
# after the first generated id, we can subsequently re-use all key/value_states from cache | |
curr_past_key_value = past_key_value.cross_attention_cache | |
else: | |
curr_past_key_value = past_key_value.self_attention_cache | |
current_states = key_value_states if is_cross_attention else hidden_states | |
if is_cross_attention and past_key_value is not None and is_updated: | |
# reuse k,v, cross_attentions | |
key_states = curr_past_key_value.key_cache[self.layer_idx] | |
value_states = curr_past_key_value.value_cache[self.layer_idx] | |
else: | |
key_states = self.k(current_states) | |
value_states = self.v(current_states) | |
key_states = key_states.view( | |
batch_size, -1, self.n_heads, self.key_value_proj_dim | |
).transpose(1, 2) | |
value_states = value_states.view( | |
batch_size, -1, self.n_heads, self.key_value_proj_dim | |
).transpose(1, 2) | |
if past_key_value is not None: | |
# save all key/value_states to cache to be re-used for fast auto-regressive generation | |
cache_position = cache_position if not is_cross_attention else None | |
key_states, value_states = curr_past_key_value.update( | |
key_states, | |
value_states, | |
self.layer_idx, | |
{"cache_position": cache_position}, | |
) | |
# set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls | |
if is_cross_attention: | |
past_key_value.is_updated[self.layer_idx] = True | |
# compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 | |
scores = torch.matmul(query_states, key_states.transpose(3, 2)) | |
if position_bias is None: | |
key_length = key_states.shape[-2] | |
# cache position is 0-indexed so we add 1 to get the real length of queries (aka with past) | |
real_seq_length = ( | |
query_length if query_length is not None else cache_position[-1] + 1 | |
) | |
if not self.has_relative_attention_bias: | |
position_bias = torch.zeros( | |
(1, self.n_heads, seq_length, key_length), | |
device=scores.device, | |
dtype=scores.dtype, | |
) | |
if self.gradient_checkpointing and self.training: | |
position_bias.requires_grad = True | |
else: | |
position_bias = self.compute_bias( | |
real_seq_length, | |
key_length, | |
device=scores.device, | |
cache_position=cache_position, | |
) | |
position_bias = position_bias[:, :, -seq_length:, :] | |
if mask is not None: | |
causal_mask = mask[:, :, :, : key_states.shape[-2]] | |
position_bias = position_bias + causal_mask | |
if self.pruned_heads: | |
mask = torch.ones(position_bias.shape[1]) | |
mask[list(self.pruned_heads)] = 0 | |
position_bias_masked = position_bias[:, mask.bool()] | |
else: | |
position_bias_masked = position_bias | |
scores += position_bias_masked | |
# (batch_size, n_heads, seq_length, key_length) | |
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) | |
attn_weights = nn.functional.dropout( | |
attn_weights, p=self.dropout, training=self.training | |
) | |
# Mask heads if we want to | |
if layer_head_mask is not None: | |
attn_weights = attn_weights * layer_head_mask | |
attn_output = torch.matmul(attn_weights, value_states) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(batch_size, -1, self.inner_dim) | |
attn_output = self.o(attn_output) | |
outputs = (attn_output, past_key_value, position_bias) | |
if output_attentions: | |
outputs = outputs + (attn_weights,) | |
return outputs | |
class T5LayerSelfAttention(nn.Module): | |
def __init__( | |
self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None | |
): | |
super().__init__() | |
self.SelfAttention = T5Attention( | |
config, | |
has_relative_attention_bias=has_relative_attention_bias, | |
layer_idx=layer_idx, | |
) | |
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
cache_position=None, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.SelfAttention( | |
normed_hidden_states, | |
mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
cache_position=cache_position, | |
) | |
hidden_states = hidden_states + self.dropout(attention_output[0]) | |
outputs = (hidden_states,) + attention_output[ | |
1: | |
] # add attentions if we output them | |
return outputs | |
class T5LayerCrossAttention(nn.Module): | |
def __init__(self, config, layer_idx: Optional[int] = None): | |
super().__init__() | |
self.EncDecAttention = T5Attention( | |
config, has_relative_attention_bias=False, layer_idx=layer_idx | |
) | |
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
key_value_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
query_length=None, | |
output_attentions=False, | |
cache_position=None, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.EncDecAttention( | |
normed_hidden_states, | |
mask=attention_mask, | |
key_value_states=key_value_states, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
query_length=query_length, | |
output_attentions=output_attentions, | |
cache_position=cache_position, | |
) | |
layer_output = hidden_states + self.dropout(attention_output[0]) | |
outputs = (layer_output,) + attention_output[ | |
1: | |
] # add attentions if we output them | |
return outputs | |
class T5Block(nn.Module): | |
def __init__( | |
self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None | |
): | |
super().__init__() | |
self.is_decoder = config.is_decoder | |
self.layer = nn.ModuleList() | |
self.layer.append( | |
T5LayerSelfAttention( | |
config, | |
has_relative_attention_bias=has_relative_attention_bias, | |
layer_idx=layer_idx, | |
) | |
) | |
if self.is_decoder: | |
self.layer.append(T5LayerCrossAttention(config, layer_idx=layer_idx)) | |
self.layer.append(T5LayerFF(config)) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
encoder_decoder_position_bias=None, | |
layer_head_mask=None, | |
cross_attn_layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
return_dict=True, | |
cache_position=None, | |
): | |
self_attention_outputs = self.layer[0]( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
cache_position=cache_position, | |
) | |
hidden_states, past_key_value = self_attention_outputs[:2] | |
attention_outputs = self_attention_outputs[ | |
2: | |
] # Keep self-attention outputs and relative position weights | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp( | |
hidden_states, min=-clamp_value, max=clamp_value | |
) | |
do_cross_attention = self.is_decoder and encoder_hidden_states is not None | |
if do_cross_attention: | |
cross_attention_outputs = self.layer[1]( | |
hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
position_bias=encoder_decoder_position_bias, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=past_key_value, | |
query_length=cache_position[-1] + 1, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states, past_key_value = cross_attention_outputs[:2] | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp( | |
hidden_states, min=-clamp_value, max=clamp_value | |
) | |
# Keep cross-attention outputs and relative position weights | |
attention_outputs = attention_outputs + cross_attention_outputs[2:] | |
# Apply Feed Forward layer | |
hidden_states = self.layer[-1](hidden_states) | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp( | |
hidden_states, min=-clamp_value, max=clamp_value | |
) | |
outputs = (hidden_states,) | |
if use_cache: | |
outputs = outputs + (past_key_value,) + attention_outputs | |
else: | |
outputs = outputs + attention_outputs | |
return outputs # hidden-states, past_key_value, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
from transformers.activations import NewGELUActivation | |
# Current | |
# class T5ClassificationHead(nn.Module): | |
# """Head for sentence-level classification tasks.""" | |
# def __init__(self, config: T5Config): | |
# super().__init__() | |
# # self.dense_0 = nn.Linear(config.d_model, config.d_model) | |
# # self.norm_0 = T5LayerNorm(config.d_model) | |
# # self.relu_0 = NewGELUActivation() | |
# # self.dropout_0 = nn.Dropout(p=config.classifier_dropout) | |
# self.dense_0 = nn.Linear(config.d_model, config.d_model // 4) | |
# self.norm_0 = T5LayerNorm(config.d_model // 4) | |
# self.relu_0 = NewGELUActivation() | |
# self.dropout_0 = nn.Dropout(p=config.classifier_dropout) | |
# self.dense_1 = nn.Linear(config.d_model // 4, config.d_model // 16) | |
# self.norm_1 = T5LayerNorm(config.d_model // 16) | |
# self.relu_1 = NewGELUActivation() | |
# self.dropout_1 = nn.Dropout(p=config.classifier_dropout) | |
# self.dense_2 = nn.Linear(config.d_model // 16, config.d_model // 64) | |
# self.norm_2 = T5LayerNorm(config.d_model // 64) | |
# self.relu_2 = NewGELUActivation() | |
# self.dropout_2 = nn.Dropout(p=config.classifier_dropout) | |
# # self.dense_4 = nn.Linear(config.d_model // 16, config.d_model // 32) | |
# # self.norm_4 = T5LayerNorm(config.d_model // 32) | |
# # self.relu_4 = NewGELUActivation() | |
# # self.dropout_4 = nn.Dropout(p=config.classifier_dropout) | |
# self.out_proj = nn.Linear(config.d_model // 64, config.num_labels) | |
# def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
# hidden_states = self.relu_0( | |
# self.dropout_0(self.norm_0(self.dense_0(hidden_states))) | |
# ) | |
# hidden_states = self.relu_1( | |
# self.dropout_1(self.norm_1(self.dense_1(hidden_states))) | |
# ) | |
# hidden_states = self.relu_2( | |
# self.dropout_2(self.norm_2(self.dense_2(hidden_states))) | |
# ) | |
# # hidden_states = self.relu_3( | |
# # self.dropout_3(self.norm_3(self.dense_3(hidden_states))) | |
# # ) | |
# # hidden_states = self.relu_4( | |
# # self.dropout_4(self.norm_4(self.dense_4(hidden_states))) | |
# # ) | |
# out = self.out_proj(hidden_states) | |
# return out | |
class T5ClassificationHead(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config: T5Config): | |
super().__init__() | |
# self.dense_0 = nn.Linear(config.d_model, config.d_model) | |
# self.norm_0 = T5LayerNorm(config.d_model) | |
# self.relu_0 = NewGELUActivation() | |
# self.dropout_0 = nn.Dropout(p=config.classifier_dropout) | |
self.dense_0 = nn.Linear(config.d_model, config.d_model // 4) | |
self.norm_0 = T5LayerNorm(config.d_model // 4) | |
self.relu_0 = NewGELUActivation() | |
self.dropout_0 = nn.Dropout(p=config.classifier_dropout) | |
self.dense_1 = nn.Linear(config.d_model // 4, config.d_model // 16) | |
self.norm_1 = T5LayerNorm(config.d_model // 16) | |
self.relu_1 = NewGELUActivation() | |
self.dropout_1 = nn.Dropout(p=config.classifier_dropout) | |
self.dense_2 = nn.Linear(config.d_model // 16, config.d_model // 64) | |
self.norm_2 = T5LayerNorm(config.d_model // 64) | |
self.relu_2 = NewGELUActivation() | |
self.dropout_2 = nn.Dropout(p=config.classifier_dropout) | |
# self.dense_4 = nn.Linear(config.d_model // 16, config.d_model // 32) | |
# self.norm_4 = T5LayerNorm(config.d_model // 32) | |
# self.relu_4 = NewGELUActivation() | |
# self.dropout_4 = nn.Dropout(p=config.classifier_dropout) | |
self.out_proj = nn.Linear(config.d_model // 64, config.num_labels) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dropout_0( | |
self.relu_0(self.norm_0(self.dense_0(hidden_states))) | |
) | |
hidden_states = self.dropout_1( | |
self.relu_1(self.norm_1(self.dense_1(hidden_states))) | |
) | |
hidden_states = self.dropout_2( | |
self.relu_2(self.norm_2(self.dense_2(hidden_states))) | |
) | |
out = self.out_proj(hidden_states) | |
return out | |
class T5PreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = T5Config | |
load_tf_weights = load_tf_weights_in_t5 | |
base_model_prefix = "transformer" | |
is_parallelizable = True | |
supports_gradient_checkpointing = True | |
_supports_quantized_cache = False # enc-dec models don't support yet | |
_supports_static_cache = True | |
_supports_cache_class = True | |
_no_split_modules = ["T5Block"] | |
_keep_in_fp32_modules = ["wo"] | |
def dummy_inputs(self): | |
input_ids = torch.tensor(DUMMY_INPUTS) | |
input_mask = torch.tensor(DUMMY_MASK) | |
dummy_inputs = { | |
"decoder_input_ids": input_ids, | |
"input_ids": input_ids, | |
"decoder_attention_mask": input_mask, | |
} | |
return dummy_inputs | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
factor = ( | |
self.config.initializer_factor | |
) # Used for testing weights initialization | |
if isinstance(module, T5LayerNorm): | |
module.weight.data.fill_(factor * 1.0) | |
elif isinstance( | |
module, | |
( | |
T5Model, | |
T5ForConditionalGeneration, | |
T5EncoderModel, | |
T5ForQuestionAnswering, | |
), | |
): | |
# Mesh TensorFlow embeddings initialization | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 | |
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: | |
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
if hasattr(module, "qa_outputs"): | |
module.qa_outputs.weight.data.normal_( | |
mean=0.0, std=factor * ((self.config.d_model) ** -0.5) | |
) | |
module.qa_outputs.bias.data.zero_() | |
elif isinstance(module, T5ForTokenClassification): | |
if hasattr(module, "classifier"): | |
module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
module.classifier.bias.data.zero_() | |
elif isinstance(module, T5ClassificationHead): | |
module.dense_0.weight.data.normal_( | |
mean=0.0, std=factor * ((self.config.d_model) ** -0.5) | |
) | |
if hasattr(module.dense_0, "bias") and module.dense_0.bias is not None: | |
module.dense_0.bias.data.zero_() | |
module.dense_1.weight.data.normal_( | |
mean=0.0, std=factor * ((self.config.d_model // 4) ** -0.5) | |
) | |
if hasattr(module.dense_1, "bias") and module.dense_1.bias is not None: | |
module.dense_1.bias.data.zero_() | |
module.dense_2.weight.data.normal_( | |
mean=0.0, std=factor * ((self.config.d_model // 16) ** -0.5) | |
) | |
if hasattr(module.dense_2, "bias") and module.dense_2.bias is not None: | |
module.dense_2.bias.data.zero_() | |
# module.dense_3.weight.data.normal_( | |
# mean=0.0, std=factor * ((self.config.d_model // 16) ** -0.5) | |
# ) | |
# if hasattr(module.dense_3, "bias") and module.dense_3.bias is not None: | |
# module.dense_3.bias.data.zero_() | |
# module.dense_4.weight.data.normal_( | |
# mean=0.0, std=factor * ((self.config.d_model // 16) ** -0.5) | |
# ) | |
# if hasattr(module.dense_4, "bias") and module.dense_4.bias is not None: | |
# module.dense_4.bias.data.zero_() | |
# module.dense_5.weight.data.normal_( | |
# mean=0.0, std=factor * ((self.config.d_model // 32) ** -0.5) | |
# ) | |
# if hasattr(module.dense_5, "bias") and module.dense_5.bias is not None: | |
# module.dense_5.bias.data.zero_() | |
module.out_proj.weight.data.normal_( | |
mean=0.0, std=factor * ((self.config.d_model // 64) ** -0.5) | |
) | |
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None: | |
module.out_proj.bias.data.zero_() | |
elif isinstance(module, T5DenseActDense): | |
# Mesh TensorFlow FF initialization | |
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 | |
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 | |
module.wi.weight.data.normal_( | |
mean=0.0, std=factor * ((self.config.d_model) ** -0.5) | |
) | |
if hasattr(module.wi, "bias") and module.wi.bias is not None: | |
module.wi.bias.data.zero_() | |
module.wo.weight.data.normal_( | |
mean=0.0, std=factor * ((self.config.d_ff) ** -0.5) | |
) | |
if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
module.wo.bias.data.zero_() | |
elif isinstance(module, T5DenseGatedActDense): | |
module.wi_0.weight.data.normal_( | |
mean=0.0, std=factor * ((self.config.d_model) ** -0.5) | |
) | |
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: | |
module.wi_0.bias.data.zero_() | |
module.wi_1.weight.data.normal_( | |
mean=0.0, std=factor * ((self.config.d_model) ** -0.5) | |
) | |
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: | |
module.wi_1.bias.data.zero_() | |
module.wo.weight.data.normal_( | |
mean=0.0, std=factor * ((self.config.d_ff) ** -0.5) | |
) | |
if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
module.wo.bias.data.zero_() | |
elif isinstance(module, T5Attention): | |
# Mesh TensorFlow attention initialization to avoid scaling before softmax | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 | |
d_model = self.config.d_model | |
key_value_proj_dim = self.config.d_kv | |
n_heads = self.config.num_heads | |
module.q.weight.data.normal_( | |
mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5) | |
) | |
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | |
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | |
module.o.weight.data.normal_( | |
mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5) | |
) | |
if module.has_relative_attention_bias: | |
module.relative_attention_bias.weight.data.normal_( | |
mean=0.0, std=factor * ((d_model) ** -0.5) | |
) | |
def _shift_right(self, input_ids): | |
decoder_start_token_id = self.config.decoder_start_token_id | |
pad_token_id = self.config.pad_token_id | |
if decoder_start_token_id is None: | |
raise ValueError( | |
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. " | |
"See T5 docs for more information." | |
) | |
# shift inputs to the right | |
if is_torch_fx_proxy(input_ids): | |
# Item assignment is not supported natively for proxies. | |
shifted_input_ids = torch.full( | |
input_ids.shape[:-1] + (1,), decoder_start_token_id | |
) | |
shifted_input_ids = torch.cat( | |
[shifted_input_ids, input_ids[..., :-1]], dim=-1 | |
) | |
else: | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
shifted_input_ids[..., 0] = decoder_start_token_id | |
if pad_token_id is None: | |
raise ValueError("self.model.config.pad_token_id has to be defined.") | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
return shifted_input_ids | |
class T5Stack(T5PreTrainedModel): | |
def __init__(self, config, embed_tokens=None): | |
super().__init__(config) | |
self.embed_tokens = embed_tokens | |
self.is_decoder = config.is_decoder | |
self.block = nn.ModuleList( | |
[ | |
T5Block(config, has_relative_attention_bias=bool(i == 0), layer_idx=i) | |
for i in range(config.num_layers) | |
] | |
) | |
self.final_layer_norm = T5LayerNorm( | |
config.d_model, eps=config.layer_norm_epsilon | |
) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
self.gradient_checkpointing = False | |
def parallelize(self, device_map=None): | |
warnings.warn( | |
"`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" | |
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" | |
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," | |
" 'block.1': 1, ...}", | |
FutureWarning, | |
) | |
# Check validity of device_map | |
self.device_map = ( | |
get_device_map(len(self.block), range(torch.cuda.device_count())) | |
if device_map is None | |
else device_map | |
) | |
assert_device_map(self.device_map, len(self.block)) | |
self.model_parallel = True | |
self.first_device = ( | |
"cpu" | |
if "cpu" in self.device_map.keys() | |
else "cuda:" + str(min(self.device_map.keys())) | |
) | |
self.last_device = "cuda:" + str(max(self.device_map.keys())) | |
# Load onto devices | |
for k, v in self.device_map.items(): | |
for layer in v: | |
cuda_device = "cuda:" + str(k) | |
self.block[layer] = self.block[layer].to(cuda_device) | |
# Set embed_tokens to first layer | |
self.embed_tokens = self.embed_tokens.to(self.first_device) | |
# Set final layer norm to last device | |
self.final_layer_norm = self.final_layer_norm.to(self.last_device) | |
def deparallelize(self): | |
warnings.warn( | |
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | |
FutureWarning, | |
) | |
self.model_parallel = False | |
self.device_map = None | |
self.first_device = "cpu" | |
self.last_device = "cpu" | |
for i in range(len(self.block)): | |
self.block[i] = self.block[i].to("cpu") | |
self.embed_tokens = self.embed_tokens.to("cpu") | |
self.final_layer_norm = self.final_layer_norm.to("cpu") | |
torch.cuda.empty_cache() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, new_embeddings): | |
self.embed_tokens = new_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
inputs_embeds=None, | |
head_mask=None, | |
cross_attn_head_mask=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
cache_position=None, | |
): | |
# Model parallel | |
if self.model_parallel: | |
torch.cuda.set_device(self.first_device) | |
self.embed_tokens = self.embed_tokens.to(self.first_device) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
if input_ids is not None and inputs_embeds is not None: | |
err_msg_prefix = "decoder_" if self.is_decoder else "" | |
raise ValueError( | |
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" | |
) | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
err_msg_prefix = "decoder_" if self.is_decoder else "" | |
raise ValueError( | |
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds" | |
) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
if inputs_embeds is None: | |
if self.embed_tokens is None: | |
raise ValueError( | |
"You have to initialize the model with valid token embeddings" | |
) | |
inputs_embeds = self.embed_tokens(input_ids) | |
batch_size, seq_length = input_shape | |
if use_cache is True: | |
if not self.is_decoder: | |
raise ValueError( | |
f"`use_cache` can only be set to `True` if {self} is used as a decoder" | |
) | |
# initialize past_key_values | |
return_legacy_cache = False | |
return_self_attention_cache = False | |
if self.is_decoder and (use_cache or past_key_values is not None): | |
if isinstance(past_key_values, Cache) and not isinstance( | |
past_key_values, EncoderDecoderCache | |
): | |
return_self_attention_cache = True | |
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache()) | |
elif not isinstance(past_key_values, EncoderDecoderCache): | |
return_legacy_cache = True | |
logger.warning_once( | |
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.48.0. " | |
"You should pass an instance of `EncoderDecoderCache` instead, e.g. " | |
"`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`." | |
) | |
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values) | |
elif past_key_values is None: | |
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache()) | |
elif not self.is_decoder: | |
# do not pass cache object down the line for encoder stack | |
# it messes indexing later in decoder-stack because cache object is modified in-place | |
past_key_values = None | |
past_key_values_length = ( | |
past_key_values.get_seq_length() if past_key_values is not None else 0 | |
) | |
if cache_position is None: | |
cache_position = torch.arange( | |
past_key_values_length, | |
past_key_values_length + seq_length, | |
device=inputs_embeds.device, | |
) | |
if attention_mask is None and not is_torchdynamo_compiling(): | |
# required mask seq length can be calculated via length of past cache | |
mask_seq_length = past_key_values_length + seq_length | |
attention_mask = torch.ones( | |
batch_size, mask_seq_length, device=inputs_embeds.device | |
) | |
if self.config.is_decoder: | |
causal_mask = self._update_causal_mask( | |
attention_mask, | |
inputs_embeds, | |
cache_position, | |
( | |
past_key_values.self_attention_cache | |
if past_key_values is not None | |
else None | |
), | |
output_attentions, | |
) | |
elif attention_mask is not None: | |
causal_mask = attention_mask[:, None, None, :] | |
causal_mask = causal_mask.to(dtype=inputs_embeds.dtype) | |
causal_mask = (1.0 - causal_mask) * torch.finfo(inputs_embeds.dtype).min | |
else: | |
causal_mask = None | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.is_decoder and encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = ( | |
encoder_hidden_states.size() | |
) | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones( | |
encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long | |
) | |
encoder_extended_attention_mask = self.invert_attention_mask( | |
encoder_attention_mask | |
) | |
else: | |
encoder_extended_attention_mask = None | |
# Prepare head mask if needed | |
head_mask = self.get_head_mask(head_mask, self.config.num_layers) | |
cross_attn_head_mask = self.get_head_mask( | |
cross_attn_head_mask, self.config.num_layers | |
) | |
all_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and self.is_decoder) else None | |
position_bias = None | |
encoder_decoder_position_bias = None | |
hidden_states = self.dropout(inputs_embeds) | |
for i, layer_module in enumerate(self.block): | |
layer_head_mask = head_mask[i] | |
cross_attn_layer_head_mask = cross_attn_head_mask[i] | |
# Model parallel | |
if self.model_parallel: | |
torch.cuda.set_device(hidden_states.device) | |
# Ensure that attention_mask is always on the same device as hidden_states | |
if causal_mask is not None: | |
causal_mask = causal_mask.to(hidden_states.device) | |
if position_bias is not None: | |
position_bias = position_bias.to(hidden_states.device) | |
if encoder_hidden_states is not None: | |
encoder_hidden_states = encoder_hidden_states.to( | |
hidden_states.device | |
) | |
if encoder_extended_attention_mask is not None: | |
encoder_extended_attention_mask = ( | |
encoder_extended_attention_mask.to(hidden_states.device) | |
) | |
if encoder_decoder_position_bias is not None: | |
encoder_decoder_position_bias = encoder_decoder_position_bias.to( | |
hidden_states.device | |
) | |
if layer_head_mask is not None: | |
layer_head_mask = layer_head_mask.to(hidden_states.device) | |
if cross_attn_layer_head_mask is not None: | |
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to( | |
hidden_states.device | |
) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.forward, | |
hidden_states, | |
causal_mask, | |
position_bias, | |
encoder_hidden_states, | |
encoder_extended_attention_mask, | |
encoder_decoder_position_bias, | |
layer_head_mask, | |
cross_attn_layer_head_mask, | |
None, # past_key_value is always None with gradient checkpointing | |
use_cache, | |
output_attentions, | |
return_dict, | |
cache_position, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask=causal_mask, | |
position_bias=position_bias, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
encoder_decoder_position_bias=encoder_decoder_position_bias, | |
layer_head_mask=layer_head_mask, | |
cross_attn_layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=past_key_values, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
# layer_outputs is a tuple with: | |
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
if use_cache is False: | |
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] | |
hidden_states, next_decoder_cache = layer_outputs[:2] | |
# We share the position biases between the layers - the first layer store them | |
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), | |
# (cross-attention position bias), (cross-attention weights) | |
position_bias = layer_outputs[2] | |
if self.is_decoder and encoder_hidden_states is not None: | |
encoder_decoder_position_bias = layer_outputs[ | |
4 if output_attentions else 3 | |
] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[3],) | |
if self.is_decoder: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[5],) | |
# Model Parallel: If it's the last layer for that device, put things on the next device | |
if self.model_parallel: | |
for k, v in self.device_map.items(): | |
if i == v[-1] and "cuda:" + str(k) != self.last_device: | |
hidden_states = hidden_states.to("cuda:" + str(k + 1)) | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
# Add last layer | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if return_self_attention_cache: | |
next_cache = past_key_values.self_attention_cache | |
if return_legacy_cache: | |
next_cache = past_key_values.to_legacy_cache() | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
next_cache, | |
all_hidden_states, | |
all_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask | |
def _update_causal_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_tensor: torch.Tensor, | |
cache_position: torch.Tensor, | |
past_key_values: Cache, | |
output_attentions: bool, | |
): | |
if self.config._attn_implementation == "flash_attention_2": | |
if attention_mask is not None and 0.0 in attention_mask: | |
return attention_mask | |
return None | |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in | |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail | |
# to infer the attention mask. | |
past_seen_tokens = ( | |
past_key_values.get_seq_length() if past_key_values is not None else 0 | |
) | |
using_static_cache = isinstance(past_key_values, StaticCache) | |
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward | |
if ( | |
self.config._attn_implementation == "sdpa" | |
and not using_static_cache | |
and not output_attentions | |
): | |
if AttentionMaskConverter._ignore_causal_mask_sdpa( | |
attention_mask, | |
inputs_embeds=input_tensor, | |
past_key_values_length=past_seen_tokens, | |
is_training=self.training, | |
): | |
return None | |
dtype, device = input_tensor.dtype, input_tensor.device | |
sequence_length = input_tensor.shape[1] | |
if using_static_cache: | |
target_length = past_key_values.get_max_cache_shape() | |
else: | |
target_length = ( | |
attention_mask.shape[-1] | |
if isinstance(attention_mask, torch.Tensor) | |
else past_seen_tokens + sequence_length + 1 | |
) | |
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D). | |
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask, | |
sequence_length=sequence_length, | |
target_length=target_length, | |
dtype=dtype, | |
device=device, | |
cache_position=cache_position, | |
batch_size=input_tensor.shape[0], | |
) | |
if ( | |
self.config._attn_implementation == "sdpa" | |
and attention_mask is not None | |
and attention_mask.device.type == "cuda" | |
and not output_attentions | |
): | |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when | |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
# Details: https://github.com/pytorch/pytorch/issues/110213 | |
min_dtype = torch.finfo(dtype).min | |
causal_mask = AttentionMaskConverter._unmask_unattended( | |
causal_mask, min_dtype | |
) | |
return causal_mask | |
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position | |
def _prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask: torch.Tensor, | |
sequence_length: int, | |
target_length: int, | |
dtype: torch.dtype, | |
device: torch.device, | |
cache_position: torch.Tensor, | |
batch_size: int, | |
**kwargs, | |
): | |
""" | |
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | |
Args: | |
attention_mask (`torch.Tensor`): | |
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape | |
`(batch_size, 1, query_length, key_value_length)`. | |
sequence_length (`int`): | |
The sequence length being processed. | |
target_length (`int`): | |
The target length: when generating with static cache, the mask should be as long as the static cache, | |
to account for the 0 padding, the part of the cache that is not filled yet. | |
dtype (`torch.dtype`): | |
The dtype to use for the 4D attention mask. | |
device (`torch.device`): | |
The device to plcae the 4D attention mask on. | |
cache_position (`torch.Tensor`): | |
Indices depicting the position of the input sequence tokens in the sequence. | |
batch_size (`torch.Tensor`): | |
Batch size. | |
""" | |
if attention_mask is not None and attention_mask.dim() == 4: | |
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. | |
causal_mask = attention_mask | |
else: | |
min_dtype = torch.finfo(dtype).min | |
causal_mask = torch.full( | |
(sequence_length, target_length), | |
fill_value=min_dtype, | |
dtype=dtype, | |
device=device, | |
) | |
if sequence_length != 1: | |
causal_mask = torch.triu(causal_mask, diagonal=1) | |
causal_mask *= torch.arange( | |
target_length, device=device | |
) > cache_position.reshape(-1, 1) | |
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | |
if attention_mask is not None: | |
causal_mask = ( | |
causal_mask.clone() | |
) # copy to contiguous memory for in-place edit | |
mask_length = attention_mask.shape[-1] | |
padding_mask = ( | |
causal_mask[:, :, :, :mask_length] | |
+ attention_mask[:, None, None, :] | |
) | |
padding_mask = padding_mask == 0 | |
causal_mask[:, :, :, :mask_length] = causal_mask[ | |
:, :, :, :mask_length | |
].masked_fill(padding_mask, min_dtype) | |
return causal_mask | |
T5_START_DOCSTRING = r""" | |
The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text | |
Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan | |
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a | |
text-to-text denoising generative setting. | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`T5Config`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
T5_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you | |
should be able to pad the inputs on both the right and the left. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for detail. | |
[What are input IDs?](../glossary#input-ids) | |
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) | |
T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` | |
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). | |
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 | |
Training](./t5#training). | |
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in | |
`[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at | |
the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
input (see `past_key_values`). This is useful if you want more control over how to convert | |
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value | |
of `inputs_embeds`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the | |
cache in the correct position and to infer the complete sequence length. | |
""" | |
T5_ENCODER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you | |
should be able to pad the inputs on both the right and the left. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for detail. | |
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
__HEAD_MASK_WARNING_MSG = """ | |
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, | |
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. | |
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, | |
num_heads)`. | |
""" | |
class T5Model(T5PreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [ | |
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", | |
] | |
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | |
def __init__(self, config: T5Config): | |
super().__init__(config) | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.is_decoder = False | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = T5Stack(encoder_config, self.shared) | |
decoder_config = copy.deepcopy(config) | |
decoder_config.is_decoder = True | |
decoder_config.is_encoder_decoder = False | |
decoder_config.num_layers = config.num_decoder_layers | |
self.decoder = T5Stack(decoder_config, self.shared) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
def parallelize(self, device_map=None): | |
warnings.warn( | |
"`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" | |
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" | |
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':" | |
" 0, 'encoder.block.1': 1, ...}", | |
FutureWarning, | |
) | |
self.device_map = ( | |
get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) | |
if device_map is None | |
else device_map | |
) | |
assert_device_map(self.device_map, len(self.encoder.block)) | |
self.encoder.parallelize(self.device_map) | |
self.decoder.parallelize(self.device_map) | |
self.model_parallel = True | |
def deparallelize(self): | |
warnings.warn( | |
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | |
FutureWarning, | |
) | |
self.encoder.deparallelize() | |
self.decoder.deparallelize() | |
self.encoder = self.encoder.to("cpu") | |
self.decoder = self.decoder.to("cpu") | |
self.model_parallel = False | |
self.device_map = None | |
torch.cuda.empty_cache() | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
self.decoder.set_input_embeddings(new_embeddings) | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | |
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
decoder_head_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
decoder_inputs_embeds: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, T5Model | |
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") | |
>>> model = T5Model.from_pretrained("google-t5/t5-small") | |
>>> input_ids = tokenizer( | |
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" | |
... ).input_ids # Batch size 1 | |
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 | |
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. | |
>>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. | |
>>> decoder_input_ids = model._shift_right(decoder_input_ids) | |
>>> # forward pass | |
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) | |
>>> last_hidden_states = outputs.last_hidden_state | |
```""" | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
if head_mask is not None and decoder_head_mask is None: | |
if self.config.num_layers == self.config.num_decoder_layers: | |
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | |
decoder_head_mask = head_mask | |
# Encode if needed (training, first prediction pass) | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
hidden_states = encoder_outputs[0] | |
# Set device for model parallelism | |
if self.model_parallel: | |
torch.cuda.set_device(self.decoder.first_device) | |
hidden_states = hidden_states.to(self.decoder.first_device) | |
if decoder_input_ids is not None: | |
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) | |
if attention_mask is not None: | |
attention_mask = attention_mask.to(self.decoder.first_device) | |
if decoder_attention_mask is not None: | |
decoder_attention_mask = decoder_attention_mask.to( | |
self.decoder.first_device | |
) | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
past_key_values=past_key_values, | |
encoder_hidden_states=hidden_states, | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
if not return_dict: | |
return decoder_outputs + encoder_outputs | |
return Seq2SeqModelOutput( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
class T5ForConditionalGeneration(T5PreTrainedModel, GenerationMixin): | |
_keys_to_ignore_on_load_unexpected = [ | |
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", | |
] | |
_tied_weights_keys = [ | |
"encoder.embed_tokens.weight", | |
"decoder.embed_tokens.weight", | |
"lm_head.weight", | |
] | |
def __init__(self, config: T5Config): | |
super().__init__(config) | |
self.model_dim = config.d_model | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.is_decoder = False | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = T5Stack(encoder_config, self.shared) | |
decoder_config = copy.deepcopy(config) | |
decoder_config.is_decoder = True | |
decoder_config.is_encoder_decoder = False | |
decoder_config.num_layers = config.num_decoder_layers | |
self.decoder = T5Stack(decoder_config, self.shared) | |
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
def parallelize(self, device_map=None): | |
warnings.warn( | |
"`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you" | |
" should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also" | |
" provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance" | |
" {'encoder.block.0': 0, 'encoder.block.1': 1, ...}", | |
FutureWarning, | |
) | |
self.device_map = ( | |
get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) | |
if device_map is None | |
else device_map | |
) | |
assert_device_map(self.device_map, len(self.encoder.block)) | |
self.encoder.parallelize(self.device_map) | |
self.decoder.parallelize(self.device_map) | |
self.lm_head = self.lm_head.to(self.decoder.first_device) | |
self.model_parallel = True | |
def deparallelize(self): | |
warnings.warn( | |
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | |
FutureWarning, | |
) | |
self.encoder.deparallelize() | |
self.decoder.deparallelize() | |
self.encoder = self.encoder.to("cpu") | |
self.decoder = self.decoder.to("cpu") | |
self.lm_head = self.lm_head.to("cpu") | |
self.model_parallel = False | |
self.device_map = None | |
torch.cuda.empty_cache() | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
self.decoder.set_input_embeddings(new_embeddings) | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | |
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def get_output_embeddings(self): | |
return self.lm_head | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
decoder_head_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for | |
labels in `[0, ..., config.vocab_size]` | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer, T5ForConditionalGeneration | |
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") | |
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small") | |
>>> # training | |
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids | |
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids | |
>>> outputs = model(input_ids=input_ids, labels=labels) | |
>>> loss = outputs.loss | |
>>> logits = outputs.logits | |
>>> # inference | |
>>> input_ids = tokenizer( | |
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" | |
... ).input_ids # Batch size 1 | |
>>> outputs = model.generate(input_ids) | |
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |
>>> # studies have shown that owning a dog is good for you. | |
```""" | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
if head_mask is not None and decoder_head_mask is None: | |
if self.config.num_layers == self.config.num_decoder_layers: | |
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | |
decoder_head_mask = head_mask | |
# Encode if needed (training, first prediction pass) | |
if encoder_outputs is None: | |
# Convert encoder inputs in embeddings if needed | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
hidden_states = encoder_outputs[0] | |
if self.model_parallel: | |
torch.cuda.set_device(self.decoder.first_device) | |
if ( | |
labels is not None | |
and decoder_input_ids is None | |
and decoder_inputs_embeds is None | |
): | |
# get decoder inputs from shifting lm labels to the right | |
decoder_input_ids = self._shift_right(labels) | |
# Set device for model parallelism | |
if self.model_parallel: | |
torch.cuda.set_device(self.decoder.first_device) | |
hidden_states = hidden_states.to(self.decoder.first_device) | |
if decoder_input_ids is not None: | |
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) | |
if attention_mask is not None: | |
attention_mask = attention_mask.to(self.decoder.first_device) | |
if decoder_attention_mask is not None: | |
decoder_attention_mask = decoder_attention_mask.to( | |
self.decoder.first_device | |
) | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
past_key_values=past_key_values, | |
encoder_hidden_states=hidden_states, | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
sequence_output = decoder_outputs[0] | |
# Set device for model parallelism | |
if self.model_parallel: | |
torch.cuda.set_device(self.encoder.first_device) | |
self.lm_head = self.lm_head.to(self.encoder.first_device) | |
sequence_output = sequence_output.to(self.lm_head.weight.device) | |
if self.config.tie_word_embeddings: | |
# Rescale output before projecting on vocab | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 | |
sequence_output = sequence_output * (self.model_dim**-0.5) | |
lm_logits = self.lm_head(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=-100) | |
# move labels to correct device to enable PP | |
labels = labels.to(lm_logits.device) | |
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) | |
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 | |
if not return_dict: | |
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs | |
return ((loss,) + output) if loss is not None else output | |
return Seq2SeqLMOutput( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
return self._shift_right(labels) | |
def _reorder_cache(self, past_key_values, beam_idx): | |
# if decoder past is not included in output | |
# speedy decoding is disabled and no need to reorder | |
if past_key_values is None: | |
logger.warning( | |
"You might want to consider setting `use_cache=True` to speed up decoding" | |
) | |
return past_key_values | |
reordered_decoder_past = () | |
for layer_past_states in past_key_values: | |
# get the correct batch idx from layer past batch dim | |
# batch dim of `past` is at 2nd position | |
reordered_layer_past_states = () | |
for layer_past_state in layer_past_states: | |
# need to set correct `past` for each of the four key / value states | |
reordered_layer_past_states = reordered_layer_past_states + ( | |
layer_past_state.index_select( | |
0, beam_idx.to(layer_past_state.device) | |
), | |
) | |
if reordered_layer_past_states[0].shape != layer_past_states[0].shape: | |
raise ValueError( | |
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" | |
) | |
if len(reordered_layer_past_states) != len(layer_past_states): | |
raise ValueError( | |
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" | |
) | |
reordered_decoder_past = reordered_decoder_past + ( | |
reordered_layer_past_states, | |
) | |
return reordered_decoder_past | |
class T5EncoderModel(T5PreTrainedModel): | |
_tied_weights_keys = ["encoder.embed_tokens.weight"] | |
_keys_to_ignore_on_load_unexpected = [r"decoder"] | |
def __init__(self, config: T5Config): | |
super().__init__(config) | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = T5Stack(encoder_config, self.shared) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
def parallelize(self, device_map=None): | |
warnings.warn( | |
"`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" | |
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" | |
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," | |
" 'block.1': 1, ...}", | |
FutureWarning, | |
) | |
self.device_map = ( | |
get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) | |
if device_map is None | |
else device_map | |
) | |
assert_device_map(self.device_map, len(self.encoder.block)) | |
self.encoder.parallelize(self.device_map) | |
self.model_parallel = True | |
def deparallelize(self): | |
warnings.warn( | |
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | |
FutureWarning, | |
) | |
self.encoder.deparallelize() | |
self.encoder = self.encoder.to("cpu") | |
self.model_parallel = False | |
self.device_map = None | |
torch.cuda.empty_cache() | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | |
def get_encoder(self): | |
return self.encoder | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, T5EncoderModel | |
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") | |
>>> model = T5EncoderModel.from_pretrained("google-t5/t5-small") | |
>>> input_ids = tokenizer( | |
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" | |
... ).input_ids # Batch size 1 | |
>>> outputs = model(input_ids=input_ids) | |
>>> last_hidden_states = outputs.last_hidden_state | |
```""" | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
return encoder_outputs | |
# def nt_xent_loss(features, labels, temperature=0.1): | |
# assert len(features.size()) == 2 | |
# # Cosine similarity | |
# xcs = torch.nn.functional.cosine_similarity( | |
# features[None, :, :], features[:, None, :], dim=-1 | |
# ) | |
# xcs[torch.eye(features.size(0)).bool()] = float("-inf") | |
# # create labels mask | |
# labels = labels.unsqueeze(0) | |
# target = labels.eq(labels.T).float() | |
# target[torch.eye(features.size(0)).bool()] = 0 | |
# return torch.nn.functional.cross_entropy( | |
# (xcs / temperature).sigmoid(), target, reduction="mean" | |
# ) | |
def nt_xent_loss(features, labels): | |
assert len(features.size()) == 2 | |
xcs = torch.nn.functional.cosine_similarity( | |
features[None, :, :], features[:, None, :], dim=-1 | |
) | |
xcs = (xcs + 1) / 2 | |
xcs[torch.eye(features.size(0)).bool()] = 0 | |
labels = labels.unsqueeze(0) | |
target = labels.eq(labels.T).float() | |
target[torch.eye(features.size(0)).bool()] = 0 | |
return torch.nn.functional.cross_entropy(xcs, target, reduction="mean") | |
def contrastive_learning_loss( | |
logits: torch.Tensor, labels: torch.Tensor, temperature: float = 0.5 | |
) -> torch.Tensor: | |
""" | |
Computes contrastive loss using logits and labels. | |
Args: | |
logits (torch.Tensor): Model output embeddings of shape (batch_size, embedding_dim). | |
labels (torch.Tensor): Corresponding class labels of shape (batch_size,). | |
temperature (float): Temperature parameter to scale similarity (default: 0.5). | |
Returns: | |
torch.Tensor: Scalar loss value for the batch. | |
""" | |
# Normalize logits to unit vectors | |
logits_ = torch.nn.functional.normalize(logits, p=2, dim=1) | |
# Compute pairwise cosine similarity | |
pairwise_similarities = torch.mm(logits_, logits_.T) / temperature | |
# Exponential similarities for contrastive learning | |
exp_similarities = torch.exp(pairwise_similarities) | |
# Create positive and negative masks | |
labels = labels.unsqueeze(1) # Shape: (batch_size, 1) | |
positive_mask = labels.eq( | |
labels.T | |
).float() # Positive pairs: 1 if labels match, else 0 | |
# Mask to exclude self-similarity (diagonal elements) | |
mask = torch.eye(logits_.size(0), device=logits_.device) | |
positive_mask = positive_mask * (1 - mask) | |
# Compute contrastive loss | |
# For each example: log(sum(exp_similarities for positives) / sum(exp_similarities for all)) | |
numerator = exp_similarities * positive_mask | |
denominator = exp_similarities.sum( | |
dim=1, keepdim=True | |
) - exp_similarities.diag().view(-1, 1) | |
loss = -torch.log((numerator.sum(dim=1) + 1e-8) / (denominator + 1e-8).squeeze()) | |
return loss.mean() | |
class T5ForSequenceClassification(T5PreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [ | |
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight" | |
] | |
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | |
def __init__(self, config: T5Config): | |
super().__init__(config) | |
self.transformer = T5Model(config) | |
self.classification_head = T5ClassificationHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
self.model_parallel = False | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
decoder_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
""" | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
if labels is not None: | |
use_cache = False | |
if input_ids is None and inputs_embeds is not None: | |
raise NotImplementedError( | |
f"Passing input embeddings is currently not supported for {self.__class__.__name__}" | |
) | |
# Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates | |
# decoder_input_ids from input_ids if no decoder_input_ids are provided | |
if decoder_input_ids is None and decoder_inputs_embeds is None: | |
if input_ids is None: | |
raise ValueError( | |
"If no `decoder_input_ids` or `decoder_inputs_embeds` are " | |
"passed, `input_ids` cannot be `None`. Please pass either " | |
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." | |
) | |
decoder_input_ids = self._shift_right(input_ids) | |
outputs = self.transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
head_mask=head_mask, | |
decoder_head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
encoder_outputs=encoder_outputs, | |
inputs_embeds=inputs_embeds, | |
decoder_inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device) | |
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: | |
raise ValueError("All examples must have the same number of <eos> tokens.") | |
batch_size, _, hidden_size = sequence_output.shape | |
sentence_representation = sequence_output[eos_mask, :].view( | |
batch_size, -1, hidden_size | |
)[:, -1, :] | |
logits = self.classification_head(sentence_representation) | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
if self.config.problem_type is None: | |
if self.config.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.config.num_labels > 1 and ( | |
labels.dtype == torch.long or labels.dtype == torch.int | |
): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.config.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
cls_loss = loss_fct( | |
logits.view(-1, self.config.num_labels), labels.view(-1) | |
) | |
# contrastive_loss = contrastive_learning_loss(logits, labels) | |
# loss = contrastive_loss * 0.1 + cls_loss * 0.9 | |
loss = cls_loss | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return Seq2SeqSequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
) | |
class T5ForTokenClassification(T5PreTrainedModel): | |
_tied_weights_keys = ["transformer.encoder.embed_tokens.weight"] | |
def __init__(self, config: T5Config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = T5EncoderModel(config) | |
self.dropout = nn.Dropout(config.classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
Returns: | |
""" | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
outputs = self.transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
hidden_states = self.dropout(hidden_states) | |
logits = self.classifier(hidden_states) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits, outputs[2:-1]) | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class T5ForQuestionAnswering(T5PreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [ | |
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight" | |
] | |
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | |
def __init__(self, config: T5Config): | |
super().__init__(config) | |
self.model_dim = config.d_model | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.is_decoder = False | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = T5Stack(encoder_config, self.shared) | |
decoder_config = copy.deepcopy(config) | |
decoder_config.is_decoder = True | |
decoder_config.is_encoder_decoder = False | |
decoder_config.num_layers = config.num_decoder_layers | |
self.decoder = T5Stack(decoder_config, self.shared) | |
self.num_labels = config.num_labels | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
self.model_parallel = False | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
self.decoder.set_input_embeddings(new_embeddings) | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | |
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
decoder_head_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
start_positions: Optional[torch.LongTensor] = None, | |
end_positions: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence | |
are not taken into account for computing the loss. | |
Returns: | |
""" | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
if start_positions is not None and end_positions is not None: | |
use_cache = False | |
# Copied from models.bart.modeling_bart.BartModel.forward | |
# different to other models, T5 automatically creates decoder_input_ids from | |
# input_ids if no decoder_input_ids are provided | |
if decoder_input_ids is None and decoder_inputs_embeds is None: | |
if input_ids is None: | |
raise ValueError( | |
"If no `decoder_input_ids` or `decoder_inputs_embeds` are " | |
"passed, `input_ids` cannot be `None`. Please pass either " | |
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." | |
) | |
decoder_input_ids = self._shift_right(input_ids) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
if head_mask is not None and decoder_head_mask is None: | |
if self.config.num_layers == self.config.num_decoder_layers: | |
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | |
decoder_head_mask = head_mask | |
# Encode if needed (training, first prediction pass) | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
hidden_states = encoder_outputs[0] | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
past_key_values=None, | |
encoder_hidden_states=hidden_states, | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = decoder_outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1).to(start_logits.device) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1).to(end_logits.device) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs | |
return ((total_loss,) + output) if total_loss is not None else output | |
return Seq2SeqQuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |