File size: 30,038 Bytes
2d47d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
import train
import os
import time
import csv
import sys
import warnings
import random
import numpy as np
import time
import pprint
import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.nn.parallel import DistributedDataParallel as DDP
from loguru import logger
import smplx
from utils import config, logger_tools, other_tools, metric
from utils import rotation_conversions as rc
from dataloaders import data_tools
from optimizers.optim_factory import create_optimizer
from optimizers.scheduler_factory import create_scheduler
from optimizers.loss_factory import get_loss_func
from scipy.spatial.transform import Rotation
class CustomTrainer(train.BaseTrainer):
"""
motion representation learning
"""
def __init__(self, args):
super().__init__(args)
self.joints = self.train_data.joints
self.smplx = smplx.create(
self.args.data_path_1+"smplx_models/",
model_type='smplx',
gender='NEUTRAL_2020',
use_face_contour=False,
num_betas=300,
num_expression_coeffs=100,
ext='npz',
use_pca=False,
).cuda().eval()
self.tracker = other_tools.EpochTracker(["rec", "contact", "vel", "foot", "ver", "com", "kl", "acc", "trans", "transv"], [False,False, False, False, False, False, False, False, False, False])
if not self.args.rot6d: #"rot6d" not in args.pose_rep:
logger.error(f"this script is for rot6d, your pose rep. is {args.pose_rep}")
self.rec_loss = get_loss_func("GeodesicLoss")
self.vel_loss = torch.nn.L1Loss(reduction='mean')
self.vectices_loss = torch.nn.MSELoss(reduction='mean')
def inverse_selection(self, filtered_t, selection_array, n):
# 创建一个全为零的数组,形状为 n*165
original_shape_t = np.zeros((n, selection_array.size))
# 找到选择数组中为1的索引位置
selected_indices = np.where(selection_array == 1)[0]
# 将 filtered_t 的值填充到 original_shape_t 中相应的位置
for i in range(n):
original_shape_t[i, selected_indices] = filtered_t[i]
return original_shape_t
def inverse_selection_tensor(self, filtered_t, selection_array, n):
# 创建一个全为零的数组,形状为 n*165
selection_array = torch.from_numpy(selection_array).cuda()
original_shape_t = torch.zeros((n, 165)).cuda()
# 找到选择数组中为1的索引位置
selected_indices = torch.where(selection_array == 1)[0]
# 将 filtered_t 的值填充到 original_shape_t 中相应的位置
for i in range(n):
original_shape_t[i, selected_indices] = filtered_t[i]
return original_shape_t
def train(self, epoch):
self.model.train()
t_start = time.time()
self.tracker.reset()
for its, dict_data in enumerate(self.train_loader):
tar_pose_raw = dict_data["pose"]
tar_beta = dict_data["beta"].cuda()
tar_trans = dict_data["trans"].cuda()
# tar_trans_vel_x = other_tools.estimate_linear_velocity(tar_trans[:, :, 0:1], dt=1/self.args.pose_fps)
# tar_trans_vel_z = other_tools.estimate_linear_velocity(tar_trans[:, :, 2:3], dt=1/self.args.pose_fps)
tar_pose = tar_pose_raw[:, :, :27].cuda()
tar_contact = tar_pose_raw[:, :, 27:31].cuda()
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
tar_exps = torch.zeros((bs, n, 100)).cuda()
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
tar_trans_copy = tar_trans
tar_contact_copy = tar_contact
in_tar_pose = torch.cat((tar_pose, tar_trans_copy, tar_contact_copy), dim=-1)
t_data = time.time() - t_start
self.opt.zero_grad()
g_loss_final = 0
net_out = self.model(in_tar_pose)
rec_pose = net_out["rec_pose"][:, :, :j*6]
rec_pose = rec_pose.reshape(bs, n, j, 6)
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
loss_rec = self.rec_loss(rec_pose, tar_pose) * self.args.rec_weight * self.args.rec_pos_weight
self.tracker.update_meter("rec", "train", loss_rec.item())
g_loss_final += loss_rec
rec_contact = net_out["rec_pose"][:, :, j*6+3:j*6+7]
loss_contact = self.vectices_loss(rec_contact, tar_contact) * self.args.rec_weight * self.args.rec_pos_weight
self.tracker.update_meter("contact", "train", loss_contact.item())
g_loss_final += loss_contact
velocity_loss = self.vel_loss(rec_pose[:, 1:] - rec_pose[:, :-1], tar_pose[:, 1:] - tar_pose[:, :-1]) * self.args.rec_weight
acceleration_loss = self.vel_loss(rec_pose[:, 2:] + rec_pose[:, :-2] - 2 * rec_pose[:, 1:-1], tar_pose[:, 2:] + tar_pose[:, :-2] - 2 * tar_pose[:, 1:-1]) * self.args.rec_weight
self.tracker.update_meter("vel", "train", velocity_loss.item())
self.tracker.update_meter("acc", "train", acceleration_loss.item())
g_loss_final += velocity_loss
g_loss_final += acceleration_loss
# rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
# rec_x_trans = other_tools.velocity2position(rec_trans[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
# rec_z_trans = other_tools.velocity2position(rec_trans[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
# rec_y_trans = rec_trans[:,:,1:2]
# rec_xyz_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
# loss_trans_vel = self.vel_loss(rec_trans[:, :, 0:1], tar_trans_vel_x) * self.args.rec_weight \
# + self.vel_loss(rec_trans[:, :, 2:3], tar_trans_vel_z) * self.args.rec_weight
# v3 = self.vel_loss(rec_trans[:, :, 0:1][:, 1:] - rec_trans[:, :, 0:1][:, :-1], tar_trans_vel_x[:, 1:] - tar_trans_vel_x[:, :-1]) * self.args.rec_weight \
# + self.vel_loss(rec_trans[:, :, 2:3][:, 1:] - rec_trans[:, :, 2:3][:, :-1], tar_trans_vel_z[:, 1:] - tar_trans_vel_z[:, :-1]) * self.args.rec_weight
# a3 = self.vel_loss(rec_trans[:, :, 0:1][:, 2:] + rec_trans[:, :, 0:1][:, :-2] - 2 * rec_trans[:, :, 0:1][:, 1:-1], tar_trans_vel_x[:, 2:] + tar_trans_vel_x[:, :-2] - 2 * tar_trans_vel_x[:, 1:-1]) * self.args.rec_weight \
# + self.vel_loss(rec_trans[:, :, 2:3][:, 2:] + rec_trans[:, :, 2:3][:, :-2] - 2 * rec_trans[:, :, 2:3][:, 1:-1], tar_trans_vel_z[:, 2:] + tar_trans_vel_z[:, :-2] - 2 * tar_trans_vel_z[:, 1:-1]) * self.args.rec_weight
# g_loss_final += 5*v3
# g_loss_final += 5*a3
# v2 = self.vel_loss(rec_xyz_trans[:, 1:] - rec_xyz_trans[:, :-1], tar_trans[:, 1:] - tar_trans[:, :-1]) * self.args.rec_weight
# a2 = self.vel_loss(rec_xyz_trans[:, 2:] + rec_xyz_trans[:, :-2] - 2 * rec_xyz_trans[:, 1:-1], tar_trans[:, 2:] + tar_trans[:, :-2] - 2 * tar_trans[:, 1:-1]) * self.args.rec_weight
# g_loss_final += 5*v2
# g_loss_final += 5*a2
# self.tracker.update_meter("transv", "train", loss_trans_vel.item())
# g_loss_final += loss_trans_vel
# loss_trans = self.vel_loss(rec_xyz_trans, tar_trans) * self.args.rec_weight
# self.tracker.update_meter("trans", "train", loss_trans.item())
# g_loss_final += loss_trans
# vertices loss
if self.args.rec_ver_weight > 0:
# print(tar_pose.shape, bs, n, j)
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
rec_pose = self.inverse_selection_tensor(rec_pose, self.train_data.joint_mask, rec_pose.shape[0])
tar_pose = self.inverse_selection_tensor(tar_pose, self.train_data.joint_mask, tar_pose.shape[0])
vertices_rec = self.smplx(
betas=tar_beta.reshape(bs*n, 300),
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3),
expression=tar_exps.reshape(bs*n, 100),
jaw_pose=rec_pose[:, 66:69],
global_orient=rec_pose[:,:3],
body_pose=rec_pose[:,3:21*3+3],
left_hand_pose=rec_pose[:,25*3:40*3],
right_hand_pose=rec_pose[:,40*3:55*3],
return_verts=False,
return_joints=True,
leye_pose=tar_pose[:, 69:72],
reye_pose=tar_pose[:, 72:75],
)
vertices_tar = self.smplx(
betas=tar_beta.reshape(bs*n, 300),
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3),
expression=tar_exps.reshape(bs*n, 100),
jaw_pose=tar_pose[:, 66:69],
global_orient=tar_pose[:,:3],
body_pose=tar_pose[:,3:21*3+3],
left_hand_pose=tar_pose[:,25*3:40*3],
right_hand_pose=tar_pose[:,40*3:55*3],
return_verts=False,
return_joints=True,
leye_pose=tar_pose[:, 69:72],
reye_pose=tar_pose[:, 72:75],
)
joints_rec = vertices_rec['joints']
# print(joints_rec.shape)
joints_rec = joints_rec.reshape(bs, n, -1, 3)
vectices_loss = self.vectices_loss(vertices_rec['joints'], vertices_tar['joints'])
foot_idx = [7, 8, 10, 11]
model_contact = net_out["rec_pose"][:, :, j*6+3:j*6+7]
# find static indices consistent with model's own predictions
static_idx = model_contact > 0.95 # N x S x 4
# print(model_contact,static_idx)
model_feet = joints_rec[:, :, foot_idx] # foot positions (N, S, 4, 3)
model_foot_v = torch.zeros_like(model_feet)
model_foot_v[:, :-1] = (
model_feet[:, 1:, :, :] - model_feet[:, :-1, :, :]
) # (N, S-1, 4, 3)
model_foot_v[~static_idx] = 0
foot_loss = self.vel_loss(
model_foot_v, torch.zeros_like(model_foot_v)
)
self.tracker.update_meter("foot", "train", foot_loss.item()*self.args.rec_weight * self.args.rec_ver_weight*20)
self.tracker.update_meter("ver", "train", vectices_loss.item()*self.args.rec_weight * self.args.rec_ver_weight)
g_loss_final += (vectices_loss)*self.args.rec_weight*self.args.rec_ver_weight
g_loss_final += foot_loss*self.args.rec_weight*self.args.rec_ver_weight*20
# ---------------------- vae -------------------------- #
if "VQVAE" in self.args.g_name:
loss_embedding = net_out["embedding_loss"]
g_loss_final += loss_embedding
self.tracker.update_meter("com", "train", loss_embedding.item())
# elif "VAE" in self.args.g_name:
# pose_mu, pose_logvar = net_out["pose_mu"], net_out["pose_logvar"]
# KLD = -0.5 * torch.sum(1 + pose_logvar - pose_mu.pow(2) - pose_logvar.exp())
# if epoch < 0:
# KLD_weight = 0
# else:
# KLD_weight = min(1.0, (epoch - 0) * 0.05) * 0.01
# loss += KLD_weight * KLD
# self.tracker.update_meter("kl", "train", KLD_weight * KLD.item())
g_loss_final.backward()
if self.args.grad_norm != 0:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.grad_norm)
self.opt.step()
t_train = time.time() - t_start - t_data
t_start = time.time()
mem_cost = torch.cuda.memory_cached() / 1E9
lr_g = self.opt.param_groups[0]['lr']
if its % self.args.log_period == 0:
self.train_recording(epoch, its, t_data, t_train, mem_cost, lr_g)
if self.args.debug:
if its == 1: break
self.opt_s.step(epoch)
def val(self, epoch):
self.model.eval()
t_start = time.time()
with torch.no_grad():
for its, dict_data in enumerate(self.val_loader):
tar_pose_raw = dict_data["pose"]
tar_beta = dict_data["beta"].cuda()
tar_trans = dict_data["trans"].cuda()
tar_trans_vel_x = other_tools.estimate_linear_velocity(tar_trans[:, :, 0:1], dt=1/self.args.pose_fps)
tar_trans_vel_z = other_tools.estimate_linear_velocity(tar_trans[:, :, 2:3], dt=1/self.args.pose_fps)
#print(tar_pose.shape)
tar_pose = tar_pose_raw[:, :, :27].cuda()
tar_contact = tar_pose_raw[:, :, 27:31].cuda()
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
tar_exps = torch.zeros((bs, n, 100)).cuda()
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
tar_trans_copy = tar_trans
tar_contact_copy = tar_contact
in_tar_pose = torch.cat((tar_pose, tar_trans_copy, tar_contact_copy), dim=-1)
t_data = time.time() - t_start
#self.opt.zero_grad()
#g_loss_final = 0
net_out = self.model(in_tar_pose)
rec_pose = net_out["rec_pose"][:, :, :j*6]
rec_pose = rec_pose.reshape(bs, n, j, 6)
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
loss_rec = self.rec_loss(rec_pose, tar_pose) * self.args.rec_weight * self.args.rec_pos_weight
self.tracker.update_meter("rec", "val", loss_rec.item())
rec_contact = net_out["rec_pose"][:, :, j*6+3:j*6+7]
# print(rec_contact.shape, tar_contact.shape)
loss_contact = self.vel_loss(rec_contact, tar_contact) * self.args.rec_weight * self.args.rec_pos_weight
self.tracker.update_meter("contact", "val", loss_contact.item())
#g_loss_final += loss_rec
rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
rec_x_trans = other_tools.velocity2position(rec_trans[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
rec_z_trans = other_tools.velocity2position(rec_trans[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
rec_y_trans = rec_trans[:,:,1:2]
rec_xyz_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
# rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3]
# rec_x_trans = other_tools.velocity2position(rec_trans[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
# rec_z_trans = other_tools.velocity2position(rec_trans[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
# rec_y_trans = rec_trans[:,:,1:2]
# rec_xyz_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
# loss_trans_vel = self.vel_loss(rec_trans[:, :, 0:1], tar_trans_vel_x) * self.args.rec_weight \
# + self.vel_loss(rec_trans[:, :, 2:3], tar_trans_vel_z) * self.args.rec_weight
# v3 = self.vel_loss(rec_trans[:, :, 0:1][:, 1:] - rec_trans[:, :, 0:1][:, :-1], tar_trans_vel_x[:, 1:] - tar_trans_vel_x[:, :-1]) * self.args.rec_weight \
# + self.vel_loss(rec_trans[:, :, 2:3][:, 1:] - rec_trans[:, :, 2:3][:, :-1], tar_trans_vel_z[:, 1:] - tar_trans_vel_z[:, :-1]) * self.args.rec_weight
# a3 = self.vel_loss(rec_trans[:, :, 0:1][:, 2:] + rec_trans[:, :, 0:1][:, :-2] - 2 * rec_trans[:, :, 0:1][:, 1:-1], tar_trans_vel_x[:, 2:] + tar_trans_vel_x[:, :-2] - 2 * tar_trans_vel_x[:, 1:-1]) * self.args.rec_weight \
# + self.vel_loss(rec_trans[:, :, 2:3][:, 2:] + rec_trans[:, :, 2:3][:, :-2] - 2 * rec_trans[:, :, 2:3][:, 1:-1], tar_trans_vel_z[:, 2:] + tar_trans_vel_z[:, :-2] - 2 * tar_trans_vel_z[:, 1:-1]) * self.args.rec_weight
# #g_loss_final += 5*v3
# #g_loss_final += 5*a3
# v2 = self.vel_loss(rec_xyz_trans[:, 1:] - rec_xyz_trans[:, :-1], tar_trans[:, 1:] - tar_trans[:, :-1]) * self.args.rec_weight
# a2 = self.vel_loss(rec_xyz_trans[:, 2:] + rec_xyz_trans[:, :-2] - 2 * rec_xyz_trans[:, 1:-1], tar_trans[:, 2:] + tar_trans[:, :-2] - 2 * tar_trans[:, 1:-1]) * self.args.rec_weight
#g_loss_final += 5*v2
#g_loss_final += 5*a2
# self.tracker.update_meter("transv", "val", loss_trans_vel.item())
# #g_loss_final += loss_trans_vel
# loss_trans = self.vel_loss(rec_xyz_trans, tar_trans) * self.args.rec_weight
# self.tracker.update_meter("trans", "val", loss_trans.item())
#g_loss_final += loss_trans
# vertices loss
if self.args.rec_ver_weight > 0:
# print(tar_pose.shape, bs, n, j)
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
rec_pose = self.inverse_selection_tensor(rec_pose, self.train_data.joint_mask, rec_pose.shape[0])
tar_pose = self.inverse_selection_tensor(tar_pose, self.train_data.joint_mask, tar_pose.shape[0])
vertices_rec = self.smplx(
betas=tar_beta.reshape(bs*n, 300),
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3),
expression=tar_exps.reshape(bs*n, 100),
jaw_pose=rec_pose[:, 66:69],
global_orient=rec_pose[:,:3],
body_pose=rec_pose[:,3:21*3+3],
left_hand_pose=rec_pose[:,25*3:40*3],
right_hand_pose=rec_pose[:,40*3:55*3],
return_verts=False,
return_joints=True,
leye_pose=tar_pose[:, 69:72],
reye_pose=tar_pose[:, 72:75],
)
vertices_tar = self.smplx(
betas=tar_beta.reshape(bs*n, 300),
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3),
expression=tar_exps.reshape(bs*n, 100),
jaw_pose=tar_pose[:, 66:69],
global_orient=tar_pose[:,:3],
body_pose=tar_pose[:,3:21*3+3],
left_hand_pose=tar_pose[:,25*3:40*3],
right_hand_pose=tar_pose[:,40*3:55*3],
return_verts=False,
return_joints=True,
leye_pose=tar_pose[:, 69:72],
reye_pose=tar_pose[:, 72:75],
)
joints_rec = vertices_rec['joints']
joints_rec = joints_rec.reshape(bs, n, -1, 3)
vectices_loss = self.vectices_loss(vertices_rec['joints'], vertices_tar['joints'])
foot_idx = [7, 8, 10, 11]
model_contact = net_out["rec_pose"][:, :, j*6+3:j*6+7]
# find static indices consistent with model's own predictions
static_idx = model_contact > 0.95 # N x S x 4
# print(model_contact)
model_feet = joints_rec[:, :, foot_idx] # foot positions (N, S, 4, 3)
model_foot_v = torch.zeros_like(model_feet)
model_foot_v[:, :-1] = (
model_feet[:, 1:, :, :] - model_feet[:, :-1, :, :]
) # (N, S-1, 4, 3)
model_foot_v[~static_idx] = 0
foot_loss = self.vectices_loss(
model_foot_v, torch.zeros_like(model_foot_v)
)
self.tracker.update_meter("foot", "val", foot_loss.item()*self.args.rec_weight * self.args.rec_ver_weight)
self.tracker.update_meter("ver", "val", vectices_loss.item()*self.args.rec_weight * self.args.rec_ver_weight)
if "VQVAE" in self.args.g_name:
loss_embedding = net_out["embedding_loss"]
self.tracker.update_meter("com", "val", loss_embedding.item())
#g_loss_final += vectices_loss*self.args.rec_weight*self.args.rec_ver_weight
if self.args.debug:
if its == 1: break
self.val_recording(epoch)
def test(self, epoch):
results_save_path = self.checkpoint_path + f"/{epoch}/"
if os.path.exists(results_save_path):
return 0
os.makedirs(results_save_path)
start_time = time.time()
total_length = 0
test_seq_list = self.test_data.selected_file
self.model.eval()
with torch.no_grad():
for its, dict_data in enumerate(self.test_loader):
tar_pose_raw = dict_data["pose"]
tar_trans = dict_data["trans"].to(self.rank)
tar_pose = tar_pose_raw[:, :, :27].cuda()
tar_contact = tar_pose_raw[:, :, 27:31].cuda()
# tar_pose = tar_pose.cuda()
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
remain = n%self.args.pose_length
tar_pose = tar_pose[:, :n-remain, :]
tar_contact = tar_contact[:, :n-remain, :]
tar_trans_copy = tar_trans[:, :n-remain, :]
tar_contact_copy = tar_contact
in_tar_pose = torch.cat([tar_pose, tar_trans_copy, tar_contact_copy], dim=-1)
#print(tar_pose.shape)
if True:
net_out = self.model(in_tar_pose)
rec_pose = net_out["rec_pose"][:, :, :j*6]
rec_trans = net_out["rec_pose"][:, :, j*6:j*6+3] - net_out["rec_pose"][:, :, j*6:j*6+3]
# print(rec_trans.shape)
rec_x_trans = other_tools.velocity2position(rec_trans[:, :, 0:1], 1/self.args.pose_fps, tar_trans[:, 0, 0:1])
rec_z_trans = other_tools.velocity2position(rec_trans[:, :, 2:3], 1/self.args.pose_fps, tar_trans[:, 0, 2:3])
rec_y_trans = rec_trans[:,:,1:2]
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
n = rec_pose.shape[1]
rec_trans = rec_trans.cpu().numpy().reshape(bs*n, 3)
tar_pose = tar_pose[:, :n, :]
rec_pose = rec_pose.reshape(bs, n, j, 6)
rec_pose = rc.rotation_6d_to_matrix(rec_pose)#
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
rec_pose = rec_pose.cpu().numpy()
else:
pass
# for i in range(tar_pose.shape[1]//(self.args.vae_test_len)):
# tar_pose_new = tar_pose[:,i*(self.args.vae_test_len):i*(self.args.vae_test_len)+self.args.vae_test_len,:]
# net_out = self.model(**dict(inputs=tar_pose_new))
# rec_pose = net_out["rec_pose"]
# rec_pose = (rec_pose.reshape(rec_pose.shape[0], rec_pose.shape[1], -1, 6) * self.joint_level_mask_cuda).reshape(rec_pose.shape[0], rec_pose.shape[1], -1)
# if "rot6d" in self.args.pose_rep:
# rec_pose = data_transfer.rotation_6d_to_matrix(rec_pose.reshape(tar_pose.shape[0], self.args.vae_test_len, -1, 6))
# rec_pose = data_transfer.matrix_to_euler_angles(rec_pose, "XYZ").reshape(rec_pose.shape[0], rec_pose.shape[1], -1)
# if "smplx" not in self.args.pose_rep:
# rec_pose = torch.rad2deg(rec_pose)
# rec_pose = rec_pose * self.joint_mask_cuda
# out_sub = rec_pose.cpu().numpy().reshape(-1, rec_pose.shape[2])
# if i != 0:
# out_final = np.concatenate((out_final,out_sub), 0)
# else:
# out_final = out_sub
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs, n, j, 6))
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
tar_pose = tar_pose.cpu().numpy()
total_length += n
# --- save --- #
if 'smplx' in self.args.pose_rep:
gt_npz = np.load(self.args.data_path+self.args.pose_rep+"/"+test_seq_list.iloc[its]['id']+'.npz', allow_pickle=True)
stride = int(30 / self.args.pose_fps)
tar_pose = self.inverse_selection(tar_pose, self.test_data.joint_mask, tar_pose.shape[0])
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
betas=gt_npz["betas"],
poses=tar_pose[:n],
expressions=gt_npz["expressions"]-gt_npz["expressions"],
trans=rec_trans-rec_trans,
model='smplx2020',
gender='neutral',
mocap_frame_rate = 30 ,
)
rec_pose = self.inverse_selection(rec_pose, self.test_data.joint_mask, rec_pose.shape[0])
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
betas=gt_npz["betas"],
poses=rec_pose,
expressions=gt_npz["expressions"]-gt_npz["expressions"],
trans=rec_trans-rec_trans,
model='smplx2020',
gender='neutral',
mocap_frame_rate = 30 ,
)
else:
rec_pose = rc.axis_angle_to_matrix(torch.from_numpy(rec_pose.reshape(bs*n, j, 3)))
rec_pose = np.rad2deg(rc.matrix_to_euler_angles(rec_pose, "XYZ")).reshape(bs*n, j*3).numpy()
tar_pose = rc.axis_angle_to_matrix(torch.from_numpy(tar_pose.reshape(bs*n, j, 3)))
tar_pose = np.rad2deg(rc.matrix_to_euler_angles(tar_pose, "XYZ")).reshape(bs*n, j*3).numpy()
#trans="0.000000 0.000000 0.000000"
with open(f"{self.args.data_path}{self.args.pose_rep}/{test_seq_list.iloc[its]['id']}.bvh", "r") as f_demo:
with open(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.bvh', 'w+') as f_gt:
with open(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.bvh', 'w+') as f_real:
for i, line_data in enumerate(f_demo.readlines()):
if i < 431:
f_real.write(line_data)
f_gt.write(line_data)
else: break
for line_id in range(n): #,args.pre_frames, args.pose_length
line_data = np.array2string(rec_pose[line_id], max_line_width=np.inf, precision=6, suppress_small=False, separator=' ')
f_real.write(line_data[1:-2]+'\n')
for line_id in range(n): #,args.pre_frames, args.pose_length
line_data = np.array2string(tar_pose[line_id], max_line_width=np.inf, precision=6, suppress_small=False, separator=' ')
f_gt.write(line_data[1:-2]+'\n')
# with open(results_save_path+"gt_"+test_seq_list[its]+'.pkl', 'wb') as fw:
# pickle.dump(new_dict, fw)
# #new_dict2["fullpose"] = out_final
# with open(results_save_path+"res_"+test_seq_list[its]+'.pkl', 'wb') as fw1:
# pickle.dump(new_dict2, fw1)
# other_tools.render_one_sequence(
# results_save_path+"res_"+test_seq_list[its]+'.pkl',
# results_save_path+"gt_"+test_seq_list[its]+'.pkl',
# results_save_path,
# self.args.data_path + self.args.test_data_path + 'wave16k/' + test_seq_list[its]+'.npy',
# )
#if its == 1:break
end_time = time.time() - start_time
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion") |