File size: 42,505 Bytes
2d47d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
import os
import pickle
import math
import shutil
import numpy as np
import lmdb as lmdb
import textgrid as tg
import pandas as pd
import torch
import glob
import json
from termcolor import colored
from loguru import logger
from collections import defaultdict
from torch.utils.data import Dataset
import torch.distributed as dist
import pyarrow
import librosa
import smplx

from .build_vocab import Vocab
from .utils.audio_features import Wav2Vec2Model
from .data_tools import joints_list
from .utils import rotation_conversions as rc
from .utils import other_tools

class CustomDataset(Dataset):
    def __init__(self, args, loader_type, augmentation=None, kwargs=None, build_cache=True):
        self.args = args
        self.loader_type = loader_type

        self.rank = dist.get_rank()
        self.ori_stride = self.args.stride
        self.ori_length = self.args.pose_length
        self.alignment = [0,0] # for trinity
        
        self.ori_joint_list = joints_list[self.args.ori_joints]
        self.tar_joint_list = joints_list[self.args.tar_joints]
        if 'smplx' in self.args.pose_rep:
            self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3)
            self.joints = len(list(self.ori_joint_list.keys()))  
            for joint_name in self.tar_joint_list:
                self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
        else:
            self.joints = len(list(self.ori_joint_list.keys()))+1
            self.joint_mask = np.zeros(self.joints*3)
            for joint_name in self.tar_joint_list:
                if joint_name == "Hips":
                    self.joint_mask[3:6] = 1
                else:
                    self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
        # select trainable joints
        
        split_rule = pd.read_csv(args.data_path+"train_test_split.csv")
        self.selected_file = split_rule.loc[(split_rule['type'] == loader_type) & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
        if args.additional_data and loader_type == 'train':
            split_b = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
            #self.selected_file = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
            self.selected_file = pd.concat([self.selected_file, split_b])
        if self.selected_file.empty:
            logger.warning(f"{loader_type} is empty for speaker {self.args.training_speakers}, use train set 0-8 instead")
            self.selected_file = split_rule.loc[(split_rule['type'] == 'train') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
            self.selected_file = self.selected_file.iloc[0:8]
        self.data_dir = args.data_path 
        
        if loader_type == "test": 
            self.args.multi_length_training = [1.0]
        self.max_length = int(args.pose_length * self.args.multi_length_training[-1])
        self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr)
        if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr: 
            self.max_audio_pre_len = self.args.test_length*self.args.audio_sr
        
        if args.word_rep is not None:
            with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f:
                self.lang_model = pickle.load(f)
                
        preloaded_dir = self.args.root_path + self.args.cache_path + loader_type + f"/{args.pose_rep}_cache"      
        # if args.pose_norm:
        #     # careful for rotation vectors
        #     if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"):
        #         self.calculate_mean_pose()
        #     self.mean_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy")
        #     self.std_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_std.npy")
        # if args.audio_norm:
        #     if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/bvh_mean.npy"):
        #         self.calculate_mean_audio()
        #     self.mean_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_mean.npy")
        #     self.std_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_std.npy")
        # if args.facial_norm:
        #     if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"):
        #         self.calculate_mean_face()
        #     self.mean_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_mean.npy")
        #     self.std_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_std.npy")
        if self.args.beat_align:
            if not os.path.exists(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy"):
                self.calculate_mean_velocity(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
            self.avg_vel = np.load(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
            
        if build_cache and self.rank == 0:
            self.build_cache(preloaded_dir)
        self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False)
        with self.lmdb_env.begin() as txn:
            self.n_samples = txn.stat()["entries"] 

    
    def calculate_mean_velocity(self, save_path):
        self.smplx = smplx.create(
            self.args.data_path_1+"smplx_models/", 
            model_type='smplx',
            gender='NEUTRAL_2020', 
            use_face_contour=False,
            num_betas=300,
            num_expression_coeffs=100, 
            ext='npz',
            use_pca=False,
        ).cuda().eval()
        dir_p = self.data_dir + self.args.pose_rep + "/"
        all_list = []
        from tqdm import tqdm
        for tar in tqdm(os.listdir(dir_p)):
            if tar.endswith(".npz"):
                m_data = np.load(dir_p+tar, allow_pickle=True)
                betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
                n, c = poses.shape[0], poses.shape[1]
                betas = betas.reshape(1, 300)
                betas = np.tile(betas, (n, 1))
                betas = torch.from_numpy(betas).cuda().float()
                poses = torch.from_numpy(poses.reshape(n, c)).cuda().float()
                exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float()
                trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float()
                max_length = 128
                s, r = n//max_length, n%max_length
                #print(n, s, r)
                all_tensor = []
                for i in range(s):
                    with torch.no_grad():
                        joints = self.smplx(
                            betas=betas[i*max_length:(i+1)*max_length], 
                            transl=trans[i*max_length:(i+1)*max_length], 
                            expression=exps[i*max_length:(i+1)*max_length], 
                            jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69], 
                            global_orient=poses[i*max_length:(i+1)*max_length,:3], 
                            body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3], 
                            left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3], 
                            right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3], 
                            return_verts=True,
                            return_joints=True,
                            leye_pose=poses[i*max_length:(i+1)*max_length, 69:72], 
                            reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
                        )['joints'][:, :55, :].reshape(max_length, 55*3)
                    all_tensor.append(joints)
                if r != 0:
                    with torch.no_grad():
                        joints = self.smplx(
                            betas=betas[s*max_length:s*max_length+r], 
                            transl=trans[s*max_length:s*max_length+r], 
                            expression=exps[s*max_length:s*max_length+r], 
                            jaw_pose=poses[s*max_length:s*max_length+r, 66:69], 
                            global_orient=poses[s*max_length:s*max_length+r,:3], 
                            body_pose=poses[s*max_length:s*max_length+r,3:21*3+3], 
                            left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3], 
                            right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3], 
                            return_verts=True,
                            return_joints=True,
                            leye_pose=poses[s*max_length:s*max_length+r, 69:72], 
                            reye_pose=poses[s*max_length:s*max_length+r, 72:75],
                        )['joints'][:, :55, :].reshape(r, 55*3)
                    all_tensor.append(joints)
                joints = torch.cat(all_tensor, axis=0)
                joints = joints.permute(1, 0)
                dt = 1/30
            # first steps is forward diff (t+1 - t) / dt
                init_vel = (joints[:, 1:2] - joints[:, :1]) / dt
                # middle steps are second order (t+1 - t-1) / 2dt
                middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt)
                # last step is backward diff (t - t-1) / dt
                final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
                #print(joints.shape, init_vel.shape, middle_vel.shape, final_vel.shape)
                vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1).permute(1, 0).reshape(n, 55, 3)
                #print(vel_seq.shape)
                #.permute(1, 0).reshape(n, 55, 3)
                vel_seq_np = vel_seq.cpu().numpy()
                vel_joints_np = np.linalg.norm(vel_seq_np, axis=2) # n * 55
                all_list.append(vel_joints_np)
        avg_vel = np.mean(np.concatenate(all_list, axis=0),axis=0) # 55
        np.save(save_path, avg_vel)
        
    
    def build_cache(self, preloaded_dir):
        logger.info(f"Audio bit rate: {self.args.audio_fps}")
        logger.info("Reading data '{}'...".format(self.data_dir))
        logger.info("Creating the dataset cache...")
        if self.args.new_cache:
            if os.path.exists(preloaded_dir):
                shutil.rmtree(preloaded_dir)
        if os.path.exists(preloaded_dir):
            logger.info("Found the cache {}".format(preloaded_dir))
        elif self.loader_type == "test":
            self.cache_generation(
                preloaded_dir, True, 
                0, 0,
                is_test=True)
        else:
            self.cache_generation(
                preloaded_dir, self.args.disable_filtering, 
                self.args.clean_first_seconds, self.args.clean_final_seconds,
                is_test=False)
        
    def __len__(self):
        return self.n_samples
    

    def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds,  clean_final_seconds, is_test=False):
        # if "wav2vec2" in self.args.audio_rep:
        #     self.wav2vec_model = Wav2Vec2Model.from_pretrained(f"{self.args.data_path_1}/hub/transformer/wav2vec2-base-960h")
        #     self.wav2vec_model.feature_extractor._freeze_parameters()
        #     self.wav2vec_model = self.wav2vec_model.cuda()
        #     self.wav2vec_model.eval()
        
        self.n_out_samples = 0
        # create db for samples
        if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir)
        dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 50))# 50G
        n_filtered_out = defaultdict(int)
    
        for index, file_name in self.selected_file.iterrows():
            f_name = file_name["id"]
            ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
            pose_file = self.data_dir + self.args.pose_rep + "/" + f_name + ext
            pose_each_file = []
            trans_each_file = []
            shape_each_file = []
            audio_each_file = []
            facial_each_file = []
            word_each_file = []
            emo_each_file = []
            sem_each_file = []
            vid_each_file = []
            id_pose = f_name #1_wayne_0_1_1
            
            logger.info(colored(f"# ---- Building cache for Pose   {id_pose} ---- #", "blue"))
            if "smplx" in self.args.pose_rep:
                pose_data = np.load(pose_file, allow_pickle=True)
                assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30'
                stride = int(30/self.args.pose_fps)
                pose_each_file = pose_data["poses"][::stride] * self.joint_mask
                trans_each_file = pose_data["trans"][::stride]
                shape_each_file = np.repeat(pose_data["betas"].reshape(1, 300), pose_each_file.shape[0], axis=0)
                if self.args.facial_rep is not None:
                    logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
                    facial_each_file = pose_data["expressions"][::stride]
                    if self.args.facial_norm: 
                        facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
                    
            else:
                assert 120%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
                stride = int(120/self.args.pose_fps)
                with open(pose_file, "r") as pose_data:
                    for j, line in enumerate(pose_data.readlines()):
                        if j < 431: continue     
                        if j%stride != 0:continue
                        data = np.fromstring(line, dtype=float, sep=" ")
                        rot_data = rc.euler_angles_to_matrix(torch.from_numpy(np.deg2rad(data)).reshape(-1, self.joints,3), "XYZ")
                        rot_data = rc.matrix_to_axis_angle(rot_data).reshape(-1, self.joints*3) 
                        rot_data = rot_data.numpy() * self.joint_mask
                        
                        pose_each_file.append(rot_data)
                        trans_each_file.append(data[:3])
                        
                pose_each_file = np.array(pose_each_file)
                # print(pose_each_file.shape)
                trans_each_file = np.array(trans_each_file)
                shape_each_file = np.repeat(np.array(-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
                if self.args.facial_rep is not None:
                    logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
                    facial_file = pose_file.replace(self.args.pose_rep, self.args.facial_rep).replace("bvh", "json")
                    assert 60%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
                    stride = int(60/self.args.pose_fps)
                    if not os.path.exists(facial_file):
                        logger.warning(f"# ---- file not found for Facial {id_pose}, skip all files with the same id ---- #")
                        self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
                        continue
                    with open(facial_file, 'r') as facial_data_file:
                        facial_data = json.load(facial_data_file)
                        for j, frame_data in enumerate(facial_data['frames']):
                            if j%stride != 0:continue
                            facial_each_file.append(frame_data['weights'])
                    facial_each_file = np.array(facial_each_file)
                    if self.args.facial_norm: 
                        facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
                        
            if self.args.id_rep is not None:
                vid_each_file = np.repeat(np.array(int(f_name.split("_")[0])-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
      
            if self.args.audio_rep is not None:
                logger.info(f"# ---- Building cache for Audio  {id_pose} and Pose {id_pose} ---- #")
                audio_file = pose_file.replace(self.args.pose_rep, 'wave16k').replace(ext, ".wav")
                if not os.path.exists(audio_file):
                    logger.warning(f"# ---- file not found for Audio  {id_pose}, skip all files with the same id ---- #")
                    self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
                    continue
                audio_each_file, sr = librosa.load(audio_file)
                audio_each_file = librosa.resample(audio_each_file, orig_sr=sr, target_sr=self.args.audio_sr)
                if self.args.audio_rep == "onset+amplitude":
                    from numpy.lib import stride_tricks
                    frame_length = 1024
                    # hop_length = 512
                    shape = (audio_each_file.shape[-1] - frame_length + 1, frame_length)
                    strides = (audio_each_file.strides[-1], audio_each_file.strides[-1])
                    rolling_view = stride_tricks.as_strided(audio_each_file, shape=shape, strides=strides)
                    amplitude_envelope = np.max(np.abs(rolling_view), axis=1)
                    # pad the last frame_length-1 samples
                    amplitude_envelope = np.pad(amplitude_envelope, (0, frame_length-1), mode='constant', constant_values=amplitude_envelope[-1])
                    audio_onset_f = librosa.onset.onset_detect(y=audio_each_file, sr=self.args.audio_sr, units='frames')
                    onset_array = np.zeros(len(audio_each_file), dtype=float)
                    onset_array[audio_onset_f] = 1.0
                    # print(amplitude_envelope.shape, audio_each_file.shape, onset_array.shape)
                    audio_each_file = np.concatenate([amplitude_envelope.reshape(-1, 1), onset_array.reshape(-1, 1)], axis=1)
                elif self.args.audio_rep == "mfcc":
                    audio_each_file = librosa.feature.mfcc(audio_each_file, sr=self.args.audio_sr, n_mfcc=13, hop_length=int(self.args.audio_sr/self.args.audio_fps))

                if self.args.audio_norm and self.args.audio_rep == "wave16k": 
                    audio_each_file = (audio_each_file - self.mean_audio) / self.std_audio
                    
            time_offset = 0
            if self.args.word_rep is not None:
                logger.info(f"# ---- Building cache for Word   {id_pose} and Pose {id_pose} ---- #")
                word_file = f"{self.data_dir}{self.args.word_rep}/{id_pose}.TextGrid"
                if not os.path.exists(word_file):
                    logger.warning(f"# ---- file not found for Word   {id_pose}, skip all files with the same id ---- #")
                    self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
                    continue
                tgrid = tg.TextGrid.fromFile(word_file)
                if self.args.t_pre_encoder == "bert":
                    from transformers import AutoTokenizer, BertModel
                    tokenizer = AutoTokenizer.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True)
                    model = BertModel.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True).eval()
                    list_word = []
                    all_hidden = []
                    max_len = 400
                    last = 0
                    word_token_mapping = []
                    first = True
                    for i, word in enumerate(tgrid[0]):
                        last = i
                        if (i%max_len != 0) or (i==0):
                            if word.mark == "":
                                list_word.append(".")
                            else:
                                list_word.append(word.mark)
                        else:
                            max_counter = max_len
                            str_word = ' '.join(map(str, list_word))
                            if first:
                                global_len = 0
                            end = -1
                            offset_word = []
                            for k, wordvalue in enumerate(list_word):
                                start = end+1 
                                end = start+len(wordvalue)
                                offset_word.append((start, end))
                            #print(offset_word)
                            token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
                            #print(token_scan)
                            for start, end in offset_word:
                                sub_mapping = []
                                for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
                                    if int(start) <= int(start_t) and int(end_t) <= int(end):
                                        #print(i+global_len)
                                        sub_mapping.append(i+global_len)
                                word_token_mapping.append(sub_mapping)
                            #print(len(word_token_mapping))
                            global_len = word_token_mapping[-1][-1] + 1    
                            list_word = []
                            if word.mark == "":
                                list_word.append(".")
                            else:
                                list_word.append(word.mark)
                            
                            with torch.no_grad():
                                inputs = tokenizer(str_word, return_tensors="pt")
                                outputs = model(**inputs)
                                last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
                            all_hidden.append(last_hidden_states)
                     
                    #list_word = list_word[:10]
                    if list_word == []:
                        pass
                    else:
                        if first: 
                            global_len = 0
                        str_word = ' '.join(map(str, list_word))
                        end = -1
                        offset_word = []
                        for k, wordvalue in enumerate(list_word):
                            start = end+1 
                            end = start+len(wordvalue)
                            offset_word.append((start, end))
                        #print(offset_word)
                        token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
                        #print(token_scan)
                        for start, end in offset_word:
                            sub_mapping = []
                            for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
                                if int(start) <= int(start_t) and int(end_t) <= int(end):
                                    sub_mapping.append(i+global_len)
                                    #print(sub_mapping)
                            word_token_mapping.append(sub_mapping)
                        #print(len(word_token_mapping))
                        with torch.no_grad():
                            inputs = tokenizer(str_word, return_tensors="pt")
                            outputs = model(**inputs)
                            last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
                        all_hidden.append(last_hidden_states)
                    last_hidden_states = np.concatenate(all_hidden, axis=0)
            
                for i in range(pose_each_file.shape[0]):
                    found_flag = False
                    current_time = i/self.args.pose_fps + time_offset
                    j_last = 0
                    for j, word in enumerate(tgrid[0]): 
                        word_n, word_s, word_e = word.mark, word.minTime, word.maxTime
                        if word_s<=current_time and current_time<=word_e:
                            if self.args.word_cache and self.args.t_pre_encoder == 'bert':
                                mapping_index = word_token_mapping[j]
                                #print(mapping_index, word_s, word_e)
                                s_t = np.linspace(word_s, word_e, len(mapping_index)+1)
                                #print(s_t)
                                for tt, t_sep in enumerate(s_t[1:]):
                                    if current_time <= t_sep:
                                        #if len(mapping_index) > 1: print(mapping_index[tt])
                                        word_each_file.append(last_hidden_states[mapping_index[tt]])
                                        break
                            else:
                                if word_n == " ":
                                    word_each_file.append(self.lang_model.PAD_token)
                                else:
                                    word_each_file.append(self.lang_model.get_word_index(word_n))
                            found_flag = True
                            j_last = j
                            break
                        else: continue   
                    if not found_flag: 
                        if self.args.word_cache and self.args.t_pre_encoder == 'bert':
                            word_each_file.append(last_hidden_states[j_last])
                        else:
                            word_each_file.append(self.lang_model.UNK_token)
                word_each_file = np.array(word_each_file)
                #print(word_each_file.shape)
                
            if self.args.emo_rep is not None:
                logger.info(f"# ---- Building cache for Emo    {id_pose} and Pose {id_pose} ---- #")
                rtype, start = int(id_pose.split('_')[3]), int(id_pose.split('_')[3])
                if rtype == 0 or rtype == 2 or rtype == 4 or rtype == 6:
                    if start >= 1 and start <= 64:
                        score = 0
                    elif start >= 65 and start <= 72:
                        score = 1
                    elif start >= 73 and start <= 80:
                        score = 2
                    elif start >= 81 and start <= 86:
                        score = 3
                    elif start >= 87 and start <= 94:
                        score = 4
                    elif start >= 95 and start <= 102:
                        score = 5
                    elif start >= 103 and start <= 110:
                        score = 6
                    elif start >= 111 and start <= 118:
                        score = 7
                    else: pass
                else:
                    # you may denote as unknown in the future
                    score = 0
                emo_each_file = np.repeat(np.array(score).reshape(1, 1), pose_each_file.shape[0], axis=0)    
                #print(emo_each_file)
                
            if self.args.sem_rep is not None:
                logger.info(f"# ---- Building cache for Sem    {id_pose} and Pose {id_pose} ---- #")
                sem_file = f"{self.data_dir}{self.args.sem_rep}/{id_pose}.txt" 
                sem_all = pd.read_csv(sem_file, 
                    sep='\t', 
                    names=["name", "start_time", "end_time", "duration", "score", "keywords"])
                # we adopt motion-level semantic score here. 
                for i in range(pose_each_file.shape[0]):
                    found_flag = False
                    for j, (start, end, score) in enumerate(zip(sem_all['start_time'],sem_all['end_time'], sem_all['score'])):
                        current_time = i/self.args.pose_fps + time_offset
                        if start<=current_time and current_time<=end: 
                            sem_each_file.append(score)
                            found_flag=True
                            break
                        else: continue 
                    if not found_flag: sem_each_file.append(0.)
                sem_each_file = np.array(sem_each_file)
                #print(sem_each_file)
            
            filtered_result = self._sample_from_clip(
                dst_lmdb_env,
                audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file,
                vid_each_file, emo_each_file, sem_each_file,
                disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
                ) 
            for type in filtered_result.keys():
                n_filtered_out[type] += filtered_result[type]
                                
        with dst_lmdb_env.begin() as txn:
            logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan"))
            n_total_filtered = 0
            for type, n_filtered in n_filtered_out.items():
                logger.info("{}: {}".format(type, n_filtered))
                n_total_filtered += n_filtered
            logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format(
                n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan"))
        dst_lmdb_env.sync()
        dst_lmdb_env.close()
    
    def _sample_from_clip(
        self, dst_lmdb_env, audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file,
        vid_each_file, emo_each_file, sem_each_file,
        disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
        ):
        """
        for data cleaning, we ignore the data for first and final n s
        for test, we return all data 
        """
        # audio_start = int(self.alignment[0] * self.args.audio_fps)
        # pose_start = int(self.alignment[1] * self.args.pose_fps)
        #logger.info(f"before: {audio_each_file.shape} {pose_each_file.shape}")
        # audio_each_file = audio_each_file[audio_start:]
        # pose_each_file = pose_each_file[pose_start:]
        # trans_each_file = 
        #logger.info(f"after alignment: {audio_each_file.shape} {pose_each_file.shape}")
        #print(pose_each_file.shape)
        round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps  # assume 1500 frames / 15 fps = 100 s
        #print(round_seconds_skeleton)
        if audio_each_file != []:
            round_seconds_audio = len(audio_each_file) // self.args.audio_fps # assume 16,000,00 / 16,000 = 100 s
            if facial_each_file != []:
                round_seconds_facial = facial_each_file.shape[0] // self.args.pose_fps
                logger.info(f"audio: {round_seconds_audio}s, pose: {round_seconds_skeleton}s, facial: {round_seconds_facial}s")
                round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
                max_round = max(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
                if round_seconds_skeleton != max_round: 
                    logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")  
            else:
                logger.info(f"pose: {round_seconds_skeleton}s, audio: {round_seconds_audio}s")
                round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton)
                max_round = max(round_seconds_audio, round_seconds_skeleton)
                if round_seconds_skeleton != max_round: 
                    logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
        
        clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds # assume [10, 90]s
        clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps # [160,000,90*160,000]
        clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps # [150,90*15]
        
        
        for ratio in self.args.multi_length_training:
            if is_test:# stride = length for test
                cut_length = clip_e_f_pose - clip_s_f_pose
                self.args.stride = cut_length
                self.max_length = cut_length
            else:
                self.args.stride = int(ratio*self.ori_stride)
                cut_length = int(self.ori_length*ratio)
                
            num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1
            logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}")
            logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}")
            
            if audio_each_file != []:
                audio_short_length = math.floor(cut_length / self.args.pose_fps * self.args.audio_fps)
                """
                for audio sr = 16000, fps = 15, pose_length = 34, 
                audio short length = 36266.7 -> 36266
                this error is fine.
                """
                logger.info(f"audio from frame {clip_s_f_audio} to {clip_e_f_audio}, length {audio_short_length}")
             
            n_filtered_out = defaultdict(int)
            sample_pose_list = []
            sample_audio_list = []
            sample_facial_list = []
            sample_shape_list = []
            sample_word_list = []
            sample_emo_list = []
            sample_sem_list = []
            sample_vid_list = []
            sample_trans_list = []
           
            for i in range(num_subdivision): # cut into around 2s chip, (self npose)
                start_idx = clip_s_f_pose + i * self.args.stride
                fin_idx = start_idx + cut_length 
                sample_pose = pose_each_file[start_idx:fin_idx]
                sample_trans = trans_each_file[start_idx:fin_idx]
                sample_shape = shape_each_file[start_idx:fin_idx]
                # print(sample_pose.shape)
                if self.args.audio_rep is not None:
                    audio_start = clip_s_f_audio + math.floor(i * self.args.stride * self.args.audio_fps / self.args.pose_fps)
                    audio_end = audio_start + audio_short_length
                    sample_audio = audio_each_file[audio_start:audio_end]
                else:
                    sample_audio = np.array([-1])
                sample_facial = facial_each_file[start_idx:fin_idx] if self.args.facial_rep is not None else np.array([-1])
                sample_word = word_each_file[start_idx:fin_idx] if self.args.word_rep is not None else np.array([-1])
                sample_emo = emo_each_file[start_idx:fin_idx] if self.args.emo_rep is not None else np.array([-1])
                sample_sem = sem_each_file[start_idx:fin_idx] if self.args.sem_rep is not None else np.array([-1])
                sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1])
                
                if sample_pose.any() != None:
                    # filtering motion skeleton data
                    sample_pose, filtering_message = MotionPreprocessor(sample_pose).get()
                    is_correct_motion = (sample_pose != [])
                    if is_correct_motion or disable_filtering:
                        sample_pose_list.append(sample_pose)
                        sample_audio_list.append(sample_audio)
                        sample_facial_list.append(sample_facial)
                        sample_shape_list.append(sample_shape)
                        sample_word_list.append(sample_word)
                        sample_vid_list.append(sample_vid)
                        sample_emo_list.append(sample_emo)
                        sample_sem_list.append(sample_sem)
                        sample_trans_list.append(sample_trans)
                    else:
                        n_filtered_out[filtering_message] += 1

            if len(sample_pose_list) > 0:
                with dst_lmdb_env.begin(write=True) as txn:
                    for pose, audio, facial, shape, word, vid, emo, sem, trans in zip(
                        sample_pose_list,
                        sample_audio_list,
                        sample_facial_list,
                        sample_shape_list,
                        sample_word_list,
                        sample_vid_list,
                        sample_emo_list,
                        sample_sem_list,
                        sample_trans_list,):
                        k = "{:005}".format(self.n_out_samples).encode("ascii")
                        v = [pose, audio, facial, shape, word, emo, sem, vid, trans]
                        v = pyarrow.serialize(v).to_buffer()
                        txn.put(k, v)
                        self.n_out_samples += 1
        return n_filtered_out

    def __getitem__(self, idx):
        with self.lmdb_env.begin(write=False) as txn:
            key = "{:005}".format(idx).encode("ascii")
            sample = txn.get(key)
            sample = pyarrow.deserialize(sample)
            tar_pose, in_audio, in_facial, in_shape, in_word, emo, sem, vid, trans = sample
            #print(in_shape)
            #vid = torch.from_numpy(vid).int()
            emo = torch.from_numpy(emo).int()
            sem = torch.from_numpy(sem).float() 
            in_audio = torch.from_numpy(in_audio).float() 
            in_word = torch.from_numpy(in_word).float() if self.args.word_cache else torch.from_numpy(in_word).int() 
            if self.loader_type == "test":
                tar_pose = torch.from_numpy(tar_pose).float()
                trans = torch.from_numpy(trans).float()
                in_facial = torch.from_numpy(in_facial).float()
                vid = torch.from_numpy(vid).float()
                in_shape = torch.from_numpy(in_shape).float()
            else:
                in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float()
                trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float()
                vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float()
                tar_pose = torch.from_numpy(tar_pose).reshape((tar_pose.shape[0], -1)).float()
                in_facial = torch.from_numpy(in_facial).reshape((in_facial.shape[0], -1)).float()
            return {"pose":tar_pose, "audio":in_audio, "facial":in_facial, "beta": in_shape, "word":in_word, "id":vid, "emo":emo, "sem":sem, "trans":trans}

         
class MotionPreprocessor:
    def __init__(self, skeletons):
        self.skeletons = skeletons
        #self.mean_pose = mean_pose
        self.filtering_message = "PASS"

    def get(self):
        assert (self.skeletons is not None)

        # filtering
        if self.skeletons != []:
            if self.check_pose_diff():
                self.skeletons = []
                self.filtering_message = "pose"
            # elif self.check_spine_angle():
            #     self.skeletons = []
            #     self.filtering_message = "spine angle"
            # elif self.check_static_motion():
            #     self.skeletons = []
            #     self.filtering_message = "motion"

        # if self.skeletons != []:
        #     self.skeletons = self.skeletons.tolist()
        #     for i, frame in enumerate(self.skeletons):
        #         assert not np.isnan(self.skeletons[i]).any()  # missing joints

        return self.skeletons, self.filtering_message

    def check_static_motion(self, verbose=True):
        def get_variance(skeleton, joint_idx):
            wrist_pos = skeleton[:, joint_idx]
            variance = np.sum(np.var(wrist_pos, axis=0))
            return variance

        left_arm_var = get_variance(self.skeletons, 6)
        right_arm_var = get_variance(self.skeletons, 9)

        th = 0.0014  # exclude 13110
        # th = 0.002  # exclude 16905
        if left_arm_var < th and right_arm_var < th:
            if verbose:
                print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
            return True
        else:
            if verbose:
                print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
            return False


    def check_pose_diff(self, verbose=False):
#         diff = np.abs(self.skeletons - self.mean_pose) # 186*1
#         diff = np.mean(diff)

#         # th = 0.017
#         th = 0.02 #0.02  # exclude 3594
#         if diff < th:
#             if verbose:
#                 print("skip - check_pose_diff {:.5f}".format(diff))
#             return True
# #         th = 3.5 #0.02  # exclude 3594
# #         if 3.5 < diff < 5:
# #             if verbose:
# #                 print("skip - check_pose_diff {:.5f}".format(diff))
# #             return True
#         else:
#             if verbose:
#                 print("pass - check_pose_diff {:.5f}".format(diff))
        return False


    def check_spine_angle(self, verbose=True):
        def angle_between(v1, v2):
            v1_u = v1 / np.linalg.norm(v1)
            v2_u = v2 / np.linalg.norm(v2)
            return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))

        angles = []
        for i in range(self.skeletons.shape[0]):
            spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0]
            angle = angle_between(spine_vec, [0, -1, 0])
            angles.append(angle)

        if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20:  # exclude 4495
        # if np.rad2deg(max(angles)) > 20:  # exclude 8270
            if verbose:
                print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles)))
            return True
        else:
            if verbose:
                print("pass - check_spine_angle {:.5f}".format(max(angles)))
            return False