File size: 17,160 Bytes
2d47d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
import numpy as np
class Quaternions:
"""
Quaternions is a wrapper around a numpy ndarray
that allows it to act as if it were an narray of
a quaternion data type.
Therefore addition, subtraction, multiplication,
division, negation, absolute, are all defined
in terms of quaternion operations such as quaternion
multiplication.
This allows for much neater code and many routines
which conceptually do the same thing to be written
in the same way for point data and for rotation data.
The Quaternions class has been desgined such that it
should support broadcasting and slicing in all of the
usual ways.
"""
def __init__(self, qs):
if isinstance(qs, np.ndarray):
if len(qs.shape) == 1: qs = np.array([qs])
self.qs = qs
return
if isinstance(qs, Quaternions):
self.qs = qs.qs
return
raise TypeError('Quaternions must be constructed from iterable, numpy array, or Quaternions, not %s' % type(qs))
def __str__(self): return "Quaternions("+ str(self.qs) + ")"
def __repr__(self): return "Quaternions("+ repr(self.qs) + ")"
""" Helper Methods for Broadcasting and Data extraction """
@classmethod
def _broadcast(cls, sqs, oqs, scalar=False):
if isinstance(oqs, float): return sqs, oqs * np.ones(sqs.shape[:-1])
ss = np.array(sqs.shape) if not scalar else np.array(sqs.shape[:-1])
os = np.array(oqs.shape)
if len(ss) != len(os):
raise TypeError('Quaternions cannot broadcast together shapes %s and %s' % (sqs.shape, oqs.shape))
if np.all(ss == os): return sqs, oqs
if not np.all((ss == os) | (os == np.ones(len(os))) | (ss == np.ones(len(ss)))):
raise TypeError('Quaternions cannot broadcast together shapes %s and %s' % (sqs.shape, oqs.shape))
sqsn, oqsn = sqs.copy(), oqs.copy()
for a in np.where(ss == 1)[0]: sqsn = sqsn.repeat(os[a], axis=a)
for a in np.where(os == 1)[0]: oqsn = oqsn.repeat(ss[a], axis=a)
return sqsn, oqsn
""" Adding Quaterions is just Defined as Multiplication """
def __add__(self, other): return self * other
def __sub__(self, other): return self / other
""" Quaterion Multiplication """
def __mul__(self, other):
"""
Quaternion multiplication has three main methods.
When multiplying a Quaternions array by Quaternions
normal quaternion multiplication is performed.
When multiplying a Quaternions array by a vector
array of the same shape, where the last axis is 3,
it is assumed to be a Quaternion by 3D-Vector
multiplication and the 3D-Vectors are rotated
in space by the Quaternions.
When multipplying a Quaternions array by a scalar
or vector of different shape it is assumed to be
a Quaternions by Scalars multiplication and the
Quaternions are scaled using Slerp and the identity
quaternions.
"""
""" If Quaternions type do Quaternions * Quaternions """
if isinstance(other, Quaternions):
sqs, oqs = Quaternions._broadcast(self.qs, other.qs)
q0 = sqs[...,0]; q1 = sqs[...,1];
q2 = sqs[...,2]; q3 = sqs[...,3];
r0 = oqs[...,0]; r1 = oqs[...,1];
r2 = oqs[...,2]; r3 = oqs[...,3];
qs = np.empty(sqs.shape)
qs[...,0] = r0 * q0 - r1 * q1 - r2 * q2 - r3 * q3
qs[...,1] = r0 * q1 + r1 * q0 - r2 * q3 + r3 * q2
qs[...,2] = r0 * q2 + r1 * q3 + r2 * q0 - r3 * q1
qs[...,3] = r0 * q3 - r1 * q2 + r2 * q1 + r3 * q0
return Quaternions(qs)
""" If array type do Quaternions * Vectors """
if isinstance(other, np.ndarray) and other.shape[-1] == 3:
vs = Quaternions(np.concatenate([np.zeros(other.shape[:-1] + (1,)), other], axis=-1))
return (self * (vs * -self)).imaginaries
""" If float do Quaternions * Scalars """
if isinstance(other, np.ndarray) or isinstance(other, float):
return Quaternions.slerp(Quaternions.id_like(self), self, other)
raise TypeError('Cannot multiply/add Quaternions with type %s' % str(type(other)))
def __div__(self, other):
"""
When a Quaternion type is supplied, division is defined
as multiplication by the inverse of that Quaternion.
When a scalar or vector is supplied it is defined
as multiplicaion of one over the supplied value.
Essentially a scaling.
"""
if isinstance(other, Quaternions): return self * (-other)
if isinstance(other, np.ndarray): return self * (1.0 / other)
if isinstance(other, float): return self * (1.0 / other)
raise TypeError('Cannot divide/subtract Quaternions with type %s' + str(type(other)))
def __eq__(self, other): return self.qs == other.qs
def __ne__(self, other): return self.qs != other.qs
def __neg__(self):
""" Invert Quaternions """
return Quaternions(self.qs * np.array([[1, -1, -1, -1]]))
def __abs__(self):
""" Unify Quaternions To Single Pole """
qabs = self.normalized().copy()
top = np.sum(( qabs.qs) * np.array([1,0,0,0]), axis=-1)
bot = np.sum((-qabs.qs) * np.array([1,0,0,0]), axis=-1)
qabs.qs[top < bot] = -qabs.qs[top < bot]
return qabs
def __iter__(self): return iter(self.qs)
def __len__(self): return len(self.qs)
def __getitem__(self, k): return Quaternions(self.qs[k])
def __setitem__(self, k, v): self.qs[k] = v.qs
@property
def lengths(self):
return np.sum(self.qs**2.0, axis=-1)**0.5
@property
def reals(self):
return self.qs[...,0]
@property
def imaginaries(self):
return self.qs[...,1:4]
@property
def shape(self): return self.qs.shape[:-1]
def repeat(self, n, **kwargs):
return Quaternions(self.qs.repeat(n, **kwargs))
def normalized(self):
return Quaternions(self.qs / self.lengths[...,np.newaxis])
def log(self):
norm = abs(self.normalized())
imgs = norm.imaginaries
lens = np.sqrt(np.sum(imgs**2, axis=-1))
lens = np.arctan2(lens, norm.reals) / (lens + 1e-10)
return imgs * lens[...,np.newaxis]
def constrained(self, axis):
rl = self.reals
im = np.sum(axis * self.imaginaries, axis=-1)
t1 = -2 * np.arctan2(rl, im) + np.pi
t2 = -2 * np.arctan2(rl, im) - np.pi
top = Quaternions.exp(axis[np.newaxis] * (t1[:,np.newaxis] / 2.0))
bot = Quaternions.exp(axis[np.newaxis] * (t2[:,np.newaxis] / 2.0))
img = self.dot(top) > self.dot(bot)
ret = top.copy()
ret[ img] = top[ img]
ret[~img] = bot[~img]
return ret
def constrained_x(self): return self.constrained(np.array([1,0,0]))
def constrained_y(self): return self.constrained(np.array([0,1,0]))
def constrained_z(self): return self.constrained(np.array([0,0,1]))
def dot(self, q): return np.sum(self.qs * q.qs, axis=-1)
def copy(self): return Quaternions(np.copy(self.qs))
def reshape(self, s):
self.qs.reshape(s)
return self
def interpolate(self, ws):
return Quaternions.exp(np.average(abs(self).log, axis=0, weights=ws))
def euler(self, order='xyz'):
q = self.normalized().qs
q0 = q[...,0]
q1 = q[...,1]
q2 = q[...,2]
q3 = q[...,3]
es = np.zeros(self.shape + (3,))
if order == 'xyz':
es[...,0] = np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
es[...,1] = np.arcsin((2 * (q0 * q2 - q3 * q1)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
elif order == 'yzx':
es[...,0] = np.arctan2(2 * (q1 * q0 - q2 * q3), -q1 * q1 + q2 * q2 - q3 * q3 + q0 * q0)
es[...,1] = np.arctan2(2 * (q2 * q0 - q1 * q3), q1 * q1 - q2 * q2 - q3 * q3 + q0 * q0)
es[...,2] = np.arcsin((2 * (q1 * q2 + q3 * q0)).clip(-1,1))
else:
raise NotImplementedError('Cannot convert from ordering %s' % order)
"""
# These conversion don't appear to work correctly for Maya.
# http://bediyap.com/programming/convert-quaternion-to-euler-rotations/
if order == 'xyz':
es[...,0] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
es[...,1] = np.arcsin((2 * (q1 * q3 + q0 * q2)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
elif order == 'yzx':
es[...,0] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
es[...,1] = np.arcsin((2 * (q1 * q2 + q0 * q3)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
elif order == 'zxy':
es[...,0] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
es[...,1] = np.arcsin((2 * (q0 * q1 + q2 * q3)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
elif order == 'xzy':
es[...,0] = np.arctan2(2 * (q0 * q2 + q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
es[...,1] = np.arcsin((2 * (q0 * q3 - q1 * q2)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
elif order == 'yxz':
es[...,0] = np.arctan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
es[...,1] = np.arcsin((2 * (q0 * q1 - q2 * q3)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
elif order == 'zyx':
es[...,0] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
es[...,1] = np.arcsin((2 * (q0 * q2 - q1 * q3)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q0 * q3 + q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
else:
raise KeyError('Unknown ordering %s' % order)
"""
# https://github.com/ehsan/ogre/blob/master/OgreMain/src/OgreMatrix3.cpp
# Use this class and convert from matrix
return es
def average(self):
if len(self.shape) == 1:
import numpy.core.umath_tests as ut
system = ut.matrix_multiply(self.qs[:,:,np.newaxis], self.qs[:,np.newaxis,:]).sum(axis=0)
w, v = np.linalg.eigh(system)
qiT_dot_qref = (self.qs[:,:,np.newaxis] * v[np.newaxis,:,:]).sum(axis=1)
return Quaternions(v[:,np.argmin((1.-qiT_dot_qref**2).sum(axis=0))])
else:
raise NotImplementedError('Cannot average multi-dimensionsal Quaternions')
def angle_axis(self):
norm = self.normalized()
s = np.sqrt(1 - (norm.reals**2.0))
s[s == 0] = 0.001
angles = 2.0 * np.arccos(norm.reals)
axis = norm.imaginaries / s[...,np.newaxis]
return angles, axis
def transforms(self):
qw = self.qs[...,0]
qx = self.qs[...,1]
qy = self.qs[...,2]
qz = self.qs[...,3]
x2 = qx + qx; y2 = qy + qy; z2 = qz + qz;
xx = qx * x2; yy = qy * y2; wx = qw * x2;
xy = qx * y2; yz = qy * z2; wy = qw * y2;
xz = qx * z2; zz = qz * z2; wz = qw * z2;
m = np.empty(self.shape + (3,3))
m[...,0,0] = 1.0 - (yy + zz)
m[...,0,1] = xy - wz
m[...,0,2] = xz + wy
m[...,1,0] = xy + wz
m[...,1,1] = 1.0 - (xx + zz)
m[...,1,2] = yz - wx
m[...,2,0] = xz - wy
m[...,2,1] = yz + wx
m[...,2,2] = 1.0 - (xx + yy)
return m
def ravel(self):
return self.qs.ravel()
@classmethod
def id(cls, n):
if isinstance(n, tuple):
qs = np.zeros(n + (4,))
qs[...,0] = 1.0
return Quaternions(qs)
if isinstance(n, int) or isinstance(n, long):
qs = np.zeros((n,4))
qs[:,0] = 1.0
return Quaternions(qs)
raise TypeError('Cannot Construct Quaternion from %s type' % str(type(n)))
@classmethod
def id_like(cls, a):
qs = np.zeros(a.shape + (4,))
qs[...,0] = 1.0
return Quaternions(qs)
@classmethod
def exp(cls, ws):
ts = np.sum(ws**2.0, axis=-1)**0.5
ts[ts == 0] = 0.001
ls = np.sin(ts) / ts
qs = np.empty(ws.shape[:-1] + (4,))
qs[...,0] = np.cos(ts)
qs[...,1] = ws[...,0] * ls
qs[...,2] = ws[...,1] * ls
qs[...,3] = ws[...,2] * ls
return Quaternions(qs).normalized()
@classmethod
def slerp(cls, q0s, q1s, a):
fst, snd = cls._broadcast(q0s.qs, q1s.qs)
fst, a = cls._broadcast(fst, a, scalar=True)
snd, a = cls._broadcast(snd, a, scalar=True)
len = np.sum(fst * snd, axis=-1)
neg = len < 0.0
len[neg] = -len[neg]
snd[neg] = -snd[neg]
amount0 = np.zeros(a.shape)
amount1 = np.zeros(a.shape)
linear = (1.0 - len) < 0.01
omegas = np.arccos(len[~linear])
sinoms = np.sin(omegas)
amount0[ linear] = 1.0 - a[linear]
amount1[ linear] = a[linear]
amount0[~linear] = np.sin((1.0 - a[~linear]) * omegas) / sinoms
amount1[~linear] = np.sin( a[~linear] * omegas) / sinoms
return Quaternions(
amount0[...,np.newaxis] * fst +
amount1[...,np.newaxis] * snd)
@classmethod
def between(cls, v0s, v1s):
a = np.cross(v0s, v1s)
w = np.sqrt((v0s**2).sum(axis=-1) * (v1s**2).sum(axis=-1)) + (v0s * v1s).sum(axis=-1)
return Quaternions(np.concatenate([w[...,np.newaxis], a], axis=-1)).normalized()
@classmethod
def from_angle_axis(cls, angles, axis):
axis = axis / (np.sqrt(np.sum(axis**2, axis=-1)) + 1e-10)[...,np.newaxis]
sines = np.sin(angles / 2.0)[...,np.newaxis]
cosines = np.cos(angles / 2.0)[...,np.newaxis]
return Quaternions(np.concatenate([cosines, axis * sines], axis=-1))
@classmethod
def from_euler(cls, es, order='xyz', world=False):
axis = {
'x' : np.array([1,0,0]),
'y' : np.array([0,1,0]),
'z' : np.array([0,0,1]),
}
q0s = Quaternions.from_angle_axis(es[...,0], axis[order[0]])
q1s = Quaternions.from_angle_axis(es[...,1], axis[order[1]])
q2s = Quaternions.from_angle_axis(es[...,2], axis[order[2]])
return (q2s * (q1s * q0s)) if world else (q0s * (q1s * q2s))
@classmethod
def from_transforms(cls, ts):
d0, d1, d2 = ts[...,0,0], ts[...,1,1], ts[...,2,2]
q0 = ( d0 + d1 + d2 + 1.0) / 4.0
q1 = ( d0 - d1 - d2 + 1.0) / 4.0
q2 = (-d0 + d1 - d2 + 1.0) / 4.0
q3 = (-d0 - d1 + d2 + 1.0) / 4.0
q0 = np.sqrt(q0.clip(0,None))
q1 = np.sqrt(q1.clip(0,None))
q2 = np.sqrt(q2.clip(0,None))
q3 = np.sqrt(q3.clip(0,None))
c0 = (q0 >= q1) & (q0 >= q2) & (q0 >= q3)
c1 = (q1 >= q0) & (q1 >= q2) & (q1 >= q3)
c2 = (q2 >= q0) & (q2 >= q1) & (q2 >= q3)
c3 = (q3 >= q0) & (q3 >= q1) & (q3 >= q2)
q1[c0] *= np.sign(ts[c0,2,1] - ts[c0,1,2])
q2[c0] *= np.sign(ts[c0,0,2] - ts[c0,2,0])
q3[c0] *= np.sign(ts[c0,1,0] - ts[c0,0,1])
q0[c1] *= np.sign(ts[c1,2,1] - ts[c1,1,2])
q2[c1] *= np.sign(ts[c1,1,0] + ts[c1,0,1])
q3[c1] *= np.sign(ts[c1,0,2] + ts[c1,2,0])
q0[c2] *= np.sign(ts[c2,0,2] - ts[c2,2,0])
q1[c2] *= np.sign(ts[c2,1,0] + ts[c2,0,1])
q3[c2] *= np.sign(ts[c2,2,1] + ts[c2,1,2])
q0[c3] *= np.sign(ts[c3,1,0] - ts[c3,0,1])
q1[c3] *= np.sign(ts[c3,2,0] + ts[c3,0,2])
q2[c3] *= np.sign(ts[c3,2,1] + ts[c3,1,2])
qs = np.empty(ts.shape[:-2] + (4,))
qs[...,0] = q0
qs[...,1] = q1
qs[...,2] = q2
qs[...,3] = q3
return cls(qs)
|