File size: 19,865 Bytes
2d47d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import torch
import torch.nn as nn
import os
import pickle
import numpy as np
from torch.nn.utils import weight_norm
from .utils.build_vocab import Vocab

class Chomp1d(nn.Module):
    def __init__(self, chomp_size):
        super(Chomp1d, self).__init__()
        self.chomp_size = chomp_size

    def forward(self, x):
        return x[:, :, :-self.chomp_size].contiguous()


class TemporalBlock(nn.Module):
    def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2):
        super(TemporalBlock, self).__init__()
        self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size,
                                           stride=stride, padding=padding, dilation=dilation))
        self.chomp1 = Chomp1d(padding)
        self.relu1 = nn.ReLU()
        self.dropout1 = nn.Dropout(dropout)

        self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size,
                                           stride=stride, padding=padding, dilation=dilation))
        self.chomp2 = Chomp1d(padding)
        self.relu2 = nn.ReLU()
        self.dropout2 = nn.Dropout(dropout)

        self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,
                                 self.conv2, self.chomp2, self.relu2, self.dropout2)
        self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
        self.relu = nn.ReLU()
        self.init_weights()

    def init_weights(self):
        self.conv1.weight.data.normal_(0, 0.01)
        self.conv2.weight.data.normal_(0, 0.01)
        if self.downsample is not None:
            self.downsample.weight.data.normal_(0, 0.01)

    def forward(self, x):
        out = self.net(x)
        res = x if self.downsample is None else self.downsample(x)
        return self.relu(out + res)


class TemporalConvNet(nn.Module):
    def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
        super(TemporalConvNet, self).__init__()
        layers = []
        num_levels = len(num_channels)
        for i in range(num_levels):
            dilation_size = 2 ** i
            in_channels = num_inputs if i == 0 else num_channels[i-1]
            out_channels = num_channels[i]
            layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,
                                     padding=(kernel_size-1) * dilation_size, dropout=dropout)]

        self.network = nn.Sequential(*layers)

    def forward(self, x):
        return self.network(x)


class TextEncoderTCN(nn.Module):
    """ based on https://github.com/locuslab/TCN/blob/master/TCN/word_cnn/model.py """
    def __init__(self, args, n_words, embed_size=300, pre_trained_embedding=None,
                 kernel_size=2, dropout=0.3, emb_dropout=0.1, word_cache=False):
        super(TextEncoderTCN, self).__init__()
        if word_cache:
            self.embedding = None
        else:
            if pre_trained_embedding is not None:  # use pre-trained embedding (fasttext)
                #print(pre_trained_embedding.shape)
                assert pre_trained_embedding.shape[0] == n_words
                assert pre_trained_embedding.shape[1] == embed_size
                self.embedding = nn.Embedding.from_pretrained(torch.FloatTensor(pre_trained_embedding),
                                                              freeze=args.freeze_wordembed)
            else:
                self.embedding = nn.Embedding(n_words, embed_size)

        num_channels = [args.hidden_size] * args.n_layer
        self.tcn = TemporalConvNet(embed_size, num_channels, kernel_size, dropout=dropout)

        self.decoder = nn.Linear(num_channels[-1], args.word_f)
        self.drop = nn.Dropout(emb_dropout)
        self.emb_dropout = emb_dropout
        self.init_weights()

    def init_weights(self):
        self.decoder.bias.data.fill_(0)
        self.decoder.weight.data.normal_(0, 0.01)

    def forward(self, input):
        #print(input.shape)
        if self.embedding is None:
            emb = self.drop(input)
        else:
            emb = self.drop(self.embedding(input))
        y = self.tcn(emb.transpose(1, 2)).transpose(1, 2)
        y = self.decoder(y)
        return y.contiguous(), 0


class BasicBlock(nn.Module):
    """ based on timm: https://github.com/rwightman/pytorch-image-models """
    def __init__(self, inplanes, planes, ker_size, stride=1, downsample=None, cardinality=1, base_width=64,
                 reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.LeakyReLU,   norm_layer=nn.BatchNorm1d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None):
        super(BasicBlock, self).__init__()

        self.conv1 = nn.Conv1d(
            inplanes, planes, kernel_size=ker_size, stride=stride, padding=first_dilation,
            dilation=dilation, bias=True)
        self.bn1 = norm_layer(planes)
        self.act1 = act_layer(inplace=True)
        self.conv2 = nn.Conv1d(
            planes, planes, kernel_size=ker_size, padding=ker_size//2, dilation=dilation, bias=True)
        self.bn2 = norm_layer(planes)
        self.act2 = act_layer(inplace=True)
        if downsample is not None:
            self.downsample = nn.Sequential(
                nn.Conv1d(inplanes, planes,  stride=stride, kernel_size=ker_size, padding=first_dilation, dilation=dilation, bias=True),
                norm_layer(planes), 
            )
        else: self.downsample=None
        self.stride = stride
        self.dilation = dilation
        self.drop_block = drop_block
        self.drop_path = drop_path

    def zero_init_last_bn(self):
        nn.init.zeros_(self.bn2.weight)

    def forward(self, x):
        shortcut = x
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.act1(x)
        x = self.conv2(x)
        x = self.bn2(x)
        if self.downsample is not None:
            shortcut = self.downsample(shortcut)
        x += shortcut
        x = self.act2(x)
        return x


class WavEncoder(nn.Module):
    def __init__(self, out_dim):
        super().__init__() 
        self.out_dim = out_dim
        self.feat_extractor = nn.Sequential( 
                BasicBlock(1, 32, 15, 5, first_dilation=1600, downsample=True),
                BasicBlock(32, 32, 15, 6, first_dilation=0, downsample=True),
                BasicBlock(32, 32, 15, 1, first_dilation=7, ),
                BasicBlock(32, 64, 15, 6, first_dilation=0, downsample=True),
                BasicBlock(64, 64, 15, 1, first_dilation=7),
                BasicBlock(64, 128, 15, 6,  first_dilation=0,downsample=True),     
            )
        
    def forward(self, wav_data):
        wav_data = wav_data.unsqueeze(1) 
        out = self.feat_extractor(wav_data)
        return out.transpose(1, 2) 


class PoseGenerator(nn.Module):
    """
    End2End model
    audio, text and speaker ID encoder are customized based on Yoon et al. SIGGRAPH ASIA 2020
    """
    def __init__(self, args):
        super().__init__()
        self.args = args
        self.pre_length = args.pre_frames 
        self.gen_length = args.pose_length - args.pre_frames
        self.pose_dims = args.pose_dims
        self.facial_f = args.facial_f
        self.speaker_f = args.speaker_f
        self.audio_f = args.audio_f
        self.word_f = args.word_f
        self.emotion_f = args.emotion_f
        self.facial_dims = args.facial_dims
        self.args.speaker_dims = args.speaker_dims
        self.emotion_dims = args.emotion_dims
        
        self.in_size = self.audio_f + self.pose_dims + self.facial_f + self.word_f + 1
        self.audio_encoder = WavEncoder(self.audio_f)
        self.hidden_size = args.hidden_size
        self.n_layer = args.n_layer

        if self.facial_f is not 0:  
            self.facial_encoder = nn.Sequential( 
                BasicBlock(self.facial_dims, self.facial_f//2, 7, 1, first_dilation=3,  downsample=True),
                BasicBlock(self.facial_f//2, self.facial_f//2, 3, 1, first_dilation=1,  downsample=True),
                BasicBlock(self.facial_f//2, self.facial_f//2, 3, 1, first_dilation=1, ),
                BasicBlock(self.facial_f//2, self.facial_f, 3, 1, first_dilation=1,  downsample=True),   
            )
        else:
            self.facial_encoder = None

        self.text_encoder = None   
        if self.word_f is not 0:
            if args.word_cache:
                self.text_encoder = TextEncoderTCN(args, args.word_index_num, args.word_dims, pre_trained_embedding=None,
                                               dropout=args.dropout_prob, word_cache=True)
            else:
                with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f:
                    self.lang_model = pickle.load(f)
                    pre_trained_embedding = self.lang_model.word_embedding_weights
                self.text_encoder = TextEncoderTCN(args, args.word_index_num, args.word_dims, pre_trained_embedding=pre_trained_embedding,
                                               dropout=args.dropout_prob)

        self.speaker_embedding = None
        if self.speaker_f is not 0:
            self.in_size += self.speaker_f
            self.speaker_embedding =   nn.Sequential(
                nn.Embedding(self.args.speaker_dims, self.speaker_f),
                nn.Linear(self.speaker_f, self.speaker_f), 
                nn.LeakyReLU(True)
            )

            
        self.emotion_embedding = None
        if self.emotion_f is not 0:
            self.in_size += self.emotion_f
            
            self.emotion_embedding =   nn.Sequential(
                nn.Embedding(self.emotion_dims, self.emotion_f),
                nn.Linear(self.emotion_f, self.emotion_f) 
            )

            # self.emotion_embedding_tail = nn.Sequential( 
            #     nn.Conv1d(self.emotion_f, 8, 9, 1, 4),
            #     nn.BatchNorm1d(8),
            #     nn.LeakyReLU(0.3, inplace=True),
            #     nn.Conv1d(8, 16, 9, 1, 4),
            #     nn.BatchNorm1d(16),
            #     nn.LeakyReLU(0.3, inplace=True),
            #     nn.Conv1d(16, 16, 9, 1, 4),
            #     nn.BatchNorm1d(16),
            #     nn.LeakyReLU(0.3, inplace=True),
            #     nn.Conv1d(16, self.emotion_f, 9, 1, 4),
            #     nn.BatchNorm1d(self.emotion_f),
            #     nn.LeakyReLU(0.3, inplace=True),
            # )
        
        self.LSTM = nn.LSTM(self.in_size+3, hidden_size=self.hidden_size, num_layers=args.n_layer, batch_first=True,
                          bidirectional=True, dropout=args.dropout_prob)
        self.out = nn.Sequential(
            nn.Linear(self.hidden_size, self.hidden_size//2),
            nn.LeakyReLU(True),
            nn.Linear(self.hidden_size//2, 330-180)
        )
        
        self.LSTM_hands = nn.LSTM(self.in_size+150+3, hidden_size=self.hidden_size, num_layers=args.n_layer, batch_first=True,
                          bidirectional=True, dropout=args.dropout_prob)
        self.out_hands = nn.Sequential(
            nn.Linear(self.hidden_size, self.hidden_size//2),
            nn.LeakyReLU(True),
            nn.Linear(self.hidden_size//2, 180+3)
        )

        self.do_flatten_parameters = False
        if torch.cuda.device_count() > 1:
            self.do_flatten_parameters = True
            

    def forward(self, pre_seq, in_audio=None, in_facial=None, in_text=None, in_id=None, in_emo=None, is_test=False):
        if self.do_flatten_parameters:
            self.LSTM.flatten_parameters()

        text_feat_seq = audio_feat_seq = None
        if in_audio is not None:
            audio_feat_seq = self.audio_encoder(in_audio) 
        if in_text is not None:
            text_feat_seq, _ = self.text_encoder(in_text)
            assert(audio_feat_seq.shape[1] == text_feat_seq.shape[1])
        
        if self.facial_f is not 0:
            face_feat_seq = self.facial_encoder(in_facial.permute([0, 2, 1]))
            face_feat_seq = face_feat_seq.permute([0, 2, 1])
        speaker_feat_seq = None
        if self.speaker_embedding: 
            speaker_feat_seq = self.speaker_embedding(in_id)
        emo_feat_seq = None
        if self.emotion_embedding:
            emo_feat_seq = self.emotion_embedding(in_emo)
            emo_feat_seq = emo_feat_seq.permute([0,2,1])
            emo_feat_seq = self.emotion_embedding_tail(emo_feat_seq) 
            emo_feat_seq = emo_feat_seq.permute([0,2,1])

        if  audio_feat_seq.shape[1] != pre_seq.shape[1]:
            diff_length = pre_seq.shape[1] - audio_feat_seq.shape[1]
            audio_feat_seq = torch.cat((audio_feat_seq, audio_feat_seq[:,-diff_length:, :].reshape(1,diff_length,-1)),1)
       
        if self.audio_f is not 0 and self.facial_f is 0:
            in_data = torch.cat((pre_seq, audio_feat_seq), dim=2)
        elif self.audio_f is not 0 and self.facial_f is not 0:
            in_data = torch.cat((pre_seq, audio_feat_seq, face_feat_seq), dim=2)
        else: pass
        
        if text_feat_seq is not None:
            in_data = torch.cat((in_data, text_feat_seq), dim=2)
        if emo_feat_seq is not None:
            in_data = torch.cat((in_data, emo_feat_seq), dim=2)
        
        if speaker_feat_seq is not None:
            repeated_s = speaker_feat_seq
            if len(repeated_s.shape) == 2:
                repeated_s = repeated_s.reshape(1, repeated_s.shape[1], repeated_s.shape[0])
            repeated_s = repeated_s.repeat(1, in_data.shape[1], 1)
            in_data = torch.cat((in_data, repeated_s), dim=2)
        
        output, _ = self.LSTM(in_data)
        output = output[:, :, :self.hidden_size] + output[:, :, self.hidden_size:] 
        output = self.out(output.reshape(-1, output.shape[2]))
        decoder_outputs = output.reshape(in_data.shape[0], in_data.shape[1], -1)
        return decoder_outputs
    

class CaMN(PoseGenerator):
    def __init__(self, args):
        super().__init__(args)
        self.audio_fusion_dim = self.audio_f+self.speaker_f+self.emotion_f+self.word_f
        self.facial_fusion_dim = self.audio_fusion_dim + self.facial_f
        self.audio_fusion = nn.Sequential(
            nn.Linear(self.audio_fusion_dim, self.hidden_size//2),
            nn.LeakyReLU(True),
            nn.Linear(self.hidden_size//2, self.audio_f),
            nn.LeakyReLU(True),
        )
        
        self.facial_fusion = nn.Sequential(
            nn.Linear(self.facial_fusion_dim, self.hidden_size//2),
            nn.LeakyReLU(True),
            nn.Linear(self.hidden_size//2, self.facial_f),
            nn.LeakyReLU(True),
        )
        
    def forward(self, pre_seq, in_audio=None, in_facial=None, in_text=None, in_id=None, in_emo=None):
        if self.do_flatten_parameters:
            self.LSTM.flatten_parameters()
            
        decoder_hidden = decoder_hidden_hands = None
        text_feat_seq = audio_feat_seq = speaker_feat_seq = emo_feat_seq = face_feat_seq =  None
        in_data = None
        
        if self.speaker_embedding: 
            speaker_feat_seq = self.speaker_embedding(in_id).squeeze(2)
            in_data = torch.cat((in_data, speaker_feat_seq), 2) if in_data is not None else speaker_feat_seq

        if self.emotion_embedding:
            emo_feat_seq = self.emotion_embedding(in_emo).squeeze(2)
            in_data = torch.cat((in_data, emo_feat_seq), 2)
            
        if in_text is not None:
            text_feat_seq, _ = self.text_encoder(in_text)
            in_data = torch.cat((in_data, text_feat_seq), 2) if in_data is not None else text_feat_seq
            
        if in_audio is not None:
            audio_feat_seq = self.audio_encoder(in_audio) 
            if in_text is not None:
                if (audio_feat_seq.shape[1] != text_feat_seq.shape[1]):
                    min_gap = text_feat_seq.shape[1] - audio_feat_seq.shape[1]
                    audio_feat_seq = torch.cat((audio_feat_seq, audio_feat_seq[:,-min_gap:, :]),1)
            audio_fusion_seq = self.audio_fusion(torch.cat((audio_feat_seq, emo_feat_seq, speaker_feat_seq, text_feat_seq), dim=2).reshape(-1, self.audio_fusion_dim))
            audio_feat_seq = audio_fusion_seq.reshape(*audio_feat_seq.shape)
            in_data = torch.cat((in_data, audio_feat_seq), 2) if in_data is not None else audio_feat_seq
        
        if self.facial_f is not 0:
            face_feat_seq = self.facial_encoder(in_facial.permute([0, 2, 1]))
            face_feat_seq = face_feat_seq.permute([0, 2, 1])
            if (audio_feat_seq.shape[1] != face_feat_seq.shape[1]):
                min_gap_2 = face_feat_seq.shape[1] - audio_feat_seq.shape[1]
                if min_gap_2 > 0:
                    face_feat_seq = face_feat_seq[:,:audio_feat_seq.shape[1], :]
                else:
                    face_feat_seq = torch.cat((face_feat_seq, face_feat_seq[:,-min_gap_2:, :]),1)
                
            face_fusion_seq = self.facial_fusion(torch.cat((face_feat_seq, audio_feat_seq, emo_feat_seq, speaker_feat_seq, text_feat_seq), dim=2).reshape(-1, self.facial_fusion_dim))
            face_feat_seq = face_fusion_seq.reshape(*face_feat_seq.shape)
            in_data = torch.cat((in_data, face_feat_seq), 2) if in_data is not None else face_feat_seq
            
            
        in_data = torch.cat((pre_seq, in_data), dim=2)
        output, _ = self.LSTM(in_data)
        output = output[:, :, :self.hidden_size] + output[:, :, self.hidden_size:] 
        output = self.out(output.reshape(-1, output.shape[2]))
        decoder_outputs = output.reshape(in_data.shape[0], in_data.shape[1], -1)
        
        in_data = torch.cat((in_data, decoder_outputs), dim=2)
        output_hands, _ = self.LSTM_hands(in_data)
        output_hands = output_hands[:, :, :self.hidden_size] + output_hands[:, :, self.hidden_size:]
        output_hands = self.out_hands(output_hands.reshape(-1, output_hands.shape[2]))
        decoder_outputs_hands = output_hands.reshape(in_data.shape[0], in_data.shape[1], -1)
        
        decoder_outputs_final = torch.zeros((in_data.shape[0], in_data.shape[1], 333)).to(in_data.device)
        decoder_outputs_final[:, :, 0:150] = decoder_outputs[:, :, 0:150]
        decoder_outputs_final[:, :, 150:333] = decoder_outputs_hands[:, :, 0:183]
        return {
            "rec_pose": decoder_outputs_final,
        }

    
class ConvDiscriminator(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.input_size = args.pose_dims

        self.hidden_size = 64
        self.pre_conv = nn.Sequential(
            nn.Conv1d(self.input_size, 16, 3),
            nn.BatchNorm1d(16),
            nn.LeakyReLU(True),
            nn.Conv1d(16, 8, 3),
            nn.BatchNorm1d(8),
            nn.LeakyReLU(True),
            nn.Conv1d(8, 8, 3),
        )

        self.LSTM = nn.LSTM(8, hidden_size=self.hidden_size, num_layers=4, bidirectional=True,
                          dropout=0.3, batch_first=True)
        self.out = nn.Linear(self.hidden_size, 1)
        self.out2 = nn.Linear(34-6, 1)
       
        self.do_flatten_parameters = False
        if torch.cuda.device_count() > 1:
            self.do_flatten_parameters = True

    def forward(self, poses):
        if self.do_flatten_parameters:
            self.LSTM.flatten_parameters()
        poses = poses.transpose(1, 2)
        feat = self.pre_conv(poses)
        feat = feat.transpose(1, 2)
        output, _ = self.LSTM(feat)
        output = output[:, :, :self.hidden_size] + output[:, :, self.hidden_size:]  
        batch_size = poses.shape[0]
        output = output.contiguous().view(-1, output.shape[2])
        output = self.out(output)  # apply linear to every output
        output = output.view(batch_size, -1)
        output = self.out2(output)
        output = torch.sigmoid(output)
        return output