File size: 5,897 Bytes
2d47d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""Based on Daniel Holden code from:
   A Deep Learning Framework for Character Motion Synthesis and Editing
   (http://www.ipab.inf.ed.ac.uk/cgvu/motionsynthesis.pdf)
"""

import os

import numpy as np
import torch
import torch.nn as nn
from .rotations import euler_angles_to_matrix, quaternion_to_matrix, rotation_6d_to_matrix


class ForwardKinematicsLayer(nn.Module):
    """ Forward Kinematics Layer Class """

    def __init__(self, args=None, parents=None, positions=None, device=None):
        super().__init__()
        self.b_idxs = None
        if device is None:
            self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = device
        if parents is None and positions is None:
            # Load SMPL skeleton (their joint order is different from the one we use for bvh export)
            smpl_fname = os.path.join(args.smpl.smpl_body_model, args.data.gender, 'model.npz')
            smpl_data = np.load(smpl_fname, encoding='latin1')
            self.parents = torch.from_numpy(smpl_data['kintree_table'][0].astype(np.int32)).to(self.device)
            self.parents = self.parents.long()
            self.positions = torch.from_numpy(smpl_data['J'].astype(np.float32)).to(self.device)
            self.positions[1:] -= self.positions[self.parents[1:]]
        else:
            self.parents = torch.from_numpy(parents).to(self.device)
            self.parents = self.parents.long()
            self.positions = torch.from_numpy(positions).to(self.device)
            self.positions = self.positions.float()
        self.positions[0] = 0

    def rotate(self, t0s, t1s):
        return torch.matmul(t0s, t1s)

    def identity_rotation(self, rotations):
        diagonal = torch.diag(torch.tensor([1.0, 1.0, 1.0, 1.0])).to(self.device)
        diagonal = torch.reshape(
            diagonal, torch.Size([1] * len(rotations.shape[:2]) + [4, 4]))
        ts = diagonal.repeat(rotations.shape[:2] + torch.Size([1, 1]))
        return ts

    def make_fast_rotation_matrices(self, positions, rotations):
        if len(rotations.shape) == 4 and rotations.shape[-2:] == torch.Size([3, 3]):
            rot_matrices = rotations
        elif rotations.shape[-1] == 3:
            rot_matrices = euler_angles_to_matrix(rotations, convention='XYZ')
        elif rotations.shape[-1] == 4:
            rot_matrices = quaternion_to_matrix(rotations)
        elif rotations.shape[-1] == 6:
            rot_matrices = rotation_6d_to_matrix(rotations)
        else:
            raise NotImplementedError(f'Unimplemented rotation representation in FK layer, shape of {rotations.shape}')

        rot_matrices = torch.cat([rot_matrices, positions[..., None]], dim=-1)
        zeros = torch.zeros(rot_matrices.shape[:-2] + torch.Size([1, 3])).to(self.device)
        ones = torch.ones(rot_matrices.shape[:-2] + torch.Size([1, 1])).to(self.device)
        zerosones = torch.cat([zeros, ones], dim=-1)
        rot_matrices = torch.cat([rot_matrices, zerosones], dim=-2)
        return rot_matrices

    def rotate_global(self, parents, positions, rotations):
        locals = self.make_fast_rotation_matrices(positions, rotations)
        globals = self.identity_rotation(rotations)

        globals = torch.cat([locals[:, 0:1], globals[:, 1:]], dim=1)
        b_size = positions.shape[0]
        if self.b_idxs is None:
            self.b_idxs = torch.LongTensor(np.arange(b_size)).to(self.device)
        elif self.b_idxs.shape[-1] != b_size:
            self.b_idxs = torch.LongTensor(np.arange(b_size)).to(self.device)

        for i in range(1, positions.shape[1]):
            globals[:, i] = self.rotate(
                globals[self.b_idxs, parents[i]], locals[:, i])

        return globals

    def get_tpose_joints(self, offsets, parents):
        num_joints = len(parents)
        joints = [offsets[:, 0]]
        for j in range(1, len(parents)):
            joints.append(joints[parents[j]] + offsets[:, j])

        return torch.stack(joints, dim=1)

    def canonical_to_local(self, canonical_xform, global_orient=None):
        """
        Args:
            canonical_xform: (B, J, 3, 3)
            global_orient: (B, 3, 3)

        Returns:
            local_xform: (B, J, 3, 3)
        """
        local_xform = torch.zeros_like(canonical_xform)

        if global_orient is None:
            global_xform = canonical_xform
        else:
            global_xform = torch.matmul(global_orient.unsqueeze(1), canonical_xform)
        for i in range(global_xform.shape[1]):
            if i == 0:
                local_xform[:, i] = global_xform[:, i]
            else:
                local_xform[:, i] = torch.bmm(torch.linalg.inv(global_xform[:, self.parents[i]]), global_xform[:, i])

        return local_xform

    def global_to_local(self, global_xform):
        """
        Args:
            global_xform: (B, J, 3, 3)

        Returns:
            local_xform: (B, J, 3, 3)
        """
        local_xform = torch.zeros_like(global_xform)

        for i in range(global_xform.shape[1]):
            if i == 0:
                local_xform[:, i] = global_xform[:, i]
            else:
                local_xform[:, i] = torch.bmm(torch.linalg.inv(global_xform[:, self.parents[i]]), global_xform[:, i])

        return local_xform

    def forward(self, rotations, positions=None):
        """
        Args:
            rotations (B, J, D)

        Returns:
            The global position of each joint after FK (B, J, 3)
        """
        # Get the full transform with rotations for skinning
        b_size = rotations.shape[0]
        if positions is None:
            positions = self.positions.repeat(b_size, 1, 1)
        transforms = self.rotate_global(self.parents, positions, rotations)
        coordinates = transforms[:, :, :3, 3] / transforms[:, :, 3:, 3]

        return coordinates, transforms