File size: 8,007 Bytes
2d47d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import random
import math
import numpy as np
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
import torch.nn.functional as F
from .build_vocab import Vocab
class Chomp1d(nn.Module):
def __init__(self, chomp_size):
super(Chomp1d, self).__init__()
self.chomp_size = chomp_size
def forward(self, x):
return x[:, :, :-self.chomp_size].contiguous()
class TemporalBlock(nn.Module):
def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2):
super(TemporalBlock, self).__init__()
self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation))
self.chomp1 = Chomp1d(padding)
self.relu1 = nn.ReLU()
self.dropout1 = nn.Dropout(dropout)
self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation))
self.chomp2 = Chomp1d(padding)
self.relu2 = nn.ReLU()
self.dropout2 = nn.Dropout(dropout)
self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,
self.conv2, self.chomp2, self.relu2, self.dropout2)
self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
self.relu = nn.ReLU()
self.init_weights()
def init_weights(self):
self.conv1.weight.data.normal_(0, 0.01)
self.conv2.weight.data.normal_(0, 0.01)
if self.downsample is not None:
self.downsample.weight.data.normal_(0, 0.01)
def forward(self, x):
out = self.net(x)
res = x if self.downsample is None else self.downsample(x)
return self.relu(out + res)
class TemporalConvNet(nn.Module):
def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
super(TemporalConvNet, self).__init__()
layers = []
num_levels = len(num_channels)
for i in range(num_levels):
dilation_size = 2 ** i
in_channels = num_inputs if i == 0 else num_channels[i-1]
out_channels = num_channels[i]
layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,
padding=(kernel_size-1) * dilation_size, dropout=dropout)]
self.network = nn.Sequential(*layers)
def forward(self, x):
return self.network(x)
class TextEncoderTCN(nn.Module):
""" based on https://github.com/locuslab/TCN/blob/master/TCN/word_cnn/model.py """
def __init__(self, args, n_words=11195, embed_size=300, pre_trained_embedding=None,
kernel_size=2, dropout=0.3, emb_dropout=0.1, word_cache=False):
super(TextEncoderTCN, self).__init__()
# if word_cache:
# self.embedding = None
# else:
# if pre_trained_embedding is not None: # use pre-trained embedding (fasttext)
# #print(pre_trained_embedding.shape)
# assert pre_trained_embedding.shape[0] == n_words
# assert pre_trained_embedding.shape[1] == embed_size
# self.embedding = nn.Embedding.from_pretrained(torch.FloatTensor(pre_trained_embedding),
# freeze=args.freeze_wordembed)
# else:
# self.embedding = nn.Embedding(n_words, embed_size)
num_channels = [args.hidden_size] #* args.n_layer
self.tcn = TemporalConvNet(embed_size, num_channels, kernel_size, dropout=dropout)
self.decoder = nn.Linear(num_channels[-1], args.word_f)
self.drop = nn.Dropout(emb_dropout)
#self.emb_dropout = emb_dropout
self.init_weights()
def init_weights(self):
self.decoder.bias.data.fill_(0)
self.decoder.weight.data.normal_(0, 0.01)
def forward(self, input):
#print(input.shape)
# if self.embedding is None:
# emb = self.drop(input)
# else:
# emb = self.drop(self.embedding(input))
y = self.tcn(input.transpose(1, 2)).transpose(1, 2)
y = self.decoder(y)
return y, torch.max(y, dim=1)[0]
def reparameterize(mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def ConvNormRelu(in_channels, out_channels, downsample=False, padding=0, batchnorm=True):
if not downsample:
k = 3
s = 1
else:
k = 4
s = 2
conv_block = nn.Conv1d(in_channels, out_channels, kernel_size=k, stride=s, padding=padding)
norm_block = nn.BatchNorm1d(out_channels)
if batchnorm:
net = nn.Sequential(
conv_block,
norm_block,
nn.LeakyReLU(0.2, True)
)
else:
net = nn.Sequential(
conv_block,
nn.LeakyReLU(0.2, True)
)
return net
class BasicBlock(nn.Module):
""" based on timm: https://github.com/rwightman/pytorch-image-models """
def __init__(self, inplanes, planes, ker_size, stride=1, downsample=None, cardinality=1, base_width=64,
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.LeakyReLU, norm_layer=nn.BatchNorm1d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv1d(
inplanes, planes, kernel_size=ker_size, stride=stride, padding=first_dilation,
dilation=dilation, bias=True)
self.bn1 = norm_layer(planes)
self.act1 = act_layer(inplace=True)
self.conv2 = nn.Conv1d(
planes, planes, kernel_size=ker_size, padding=ker_size//2, dilation=dilation, bias=True)
self.bn2 = norm_layer(planes)
self.act2 = act_layer(inplace=True)
if downsample is not None:
self.downsample = nn.Sequential(
nn.Conv1d(inplanes, planes, stride=stride, kernel_size=ker_size, padding=first_dilation, dilation=dilation, bias=True),
norm_layer(planes),
)
else: self.downsample=None
self.stride = stride
self.dilation = dilation
self.drop_block = drop_block
self.drop_path = drop_path
def zero_init_last_bn(self):
nn.init.zeros_(self.bn2.weight)
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.bn1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.bn2(x)
if self.downsample is not None:
shortcut = self.downsample(shortcut)
x += shortcut
x = self.act2(x)
return x
def init_weight(m):
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
nn.init.xavier_normal_(m.weight)
# m.bias.data.fill_(0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def init_weight_skcnn(m):
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
nn.init.kaiming_uniform_(m.weight, a=math.sqrt(5))
# m.bias.data.fill_(0.01)
if m.bias is not None:
#nn.init.constant_(m.bias, 0)
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(m.bias, -bound, bound)
class ResBlock(nn.Module):
def __init__(self, channel):
super(ResBlock, self).__init__()
self.model = nn.Sequential(
nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1),
)
def forward(self, x):
residual = x
out = self.model(x)
out += residual
return out
|