File size: 39,500 Bytes
2d47d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 |
import os
import numpy as np
import random
import torch
import shutil
import csv
import pprint
import pandas as pd
from loguru import logger
from collections import OrderedDict
import matplotlib.pyplot as plt
import pickle
import time
import hashlib
from scipy.spatial.transform import Rotation as R
from scipy.spatial.transform import Slerp
import cv2
import utils.media
import utils.fast_render
def write_wav_names_to_csv(folder_path, csv_path):
"""
Traverse a folder and write the base names of all .wav files to a CSV file.
:param folder_path: Path to the folder to traverse.
:param csv_path: Path to the CSV file to write.
"""
# Open the CSV file for writing
with open(csv_path, mode='w', newline='') as file:
writer = csv.writer(file)
# Write the header
writer.writerow(['id', 'type'])
# Walk through the folder
for root, dirs, files in os.walk(folder_path):
for file in files:
# Check if the file ends with .wav
if file.endswith('.wav'):
# Extract the base name without the extension
base_name = os.path.splitext(file)[0]
# Write the base name and type to the CSV
writer.writerow([base_name, 'test'])
def resize_motion_sequence_tensor(sequence, target_frames):
"""
Resize a batch of 8-frame motion sequences to a specified number of frames using interpolation.
:param sequence: A (bs, 8, 165) tensor representing a batch of 8-frame motion sequences
:param target_frames: An integer representing the desired number of frames in the output sequences
:return: A (bs, target_frames, 165) tensor representing the resized motion sequences
"""
bs, _, _ = sequence.shape
# Create a time vector for the original and target sequences
original_time = torch.linspace(0, 1, 8, device=sequence.device).view(1, -1, 1)
target_time = torch.linspace(0, 1, target_frames, device=sequence.device).view(1, -1, 1)
# Permute the dimensions to (bs, 165, 8) for interpolation
sequence = sequence.permute(0, 2, 1)
# Interpolate each joint's motion to the target number of frames
resized_sequence = torch.nn.functional.interpolate(sequence, size=target_frames, mode='linear', align_corners=True)
# Permute the dimensions back to (bs, target_frames, 165)
resized_sequence = resized_sequence.permute(0, 2, 1)
return resized_sequence
def adjust_speed_according_to_ratio_tensor(chunks):
"""
Adjust the playback speed within a batch of 32-frame chunks according to random intervals.
:param chunks: A (bs, 32, 165) tensor representing a batch of motion chunks
:return: A (bs, 32, 165) tensor representing the motion chunks after speed adjustment
"""
bs, _, _ = chunks.shape
# Step 1: Divide the chunk into 4 equal intervals of 8 frames
equal_intervals = torch.chunk(chunks, 4, dim=1)
# Step 2: Randomly sample 3 points within the chunk to determine new intervals
success = 0
all_success = []
#sample_points = torch.sort(torch.randint(1, 32, (bs, 3), device=chunks.device), dim=1).values
# new_intervals_boundaries = torch.cat([torch.zeros((bs, 1), device=chunks.device, dtype=torch.long), sample_points, 32*torch.ones((bs, 1), device=chunks.device, dtype=torch.long)], dim=1)
while success != 1:
sample_points = sorted(random.sample(range(1, 32), 3))
new_intervals_boundaries = [0] + sample_points + [32]
new_intervals = [chunks[0][new_intervals_boundaries[i]:new_intervals_boundaries[i+1]] for i in range(4)]
speed_ratios = [8 / len(new_interval) for new_interval in new_intervals]
# if any of the speed ratios is greater than 3 or less than 0.33, resample
if all([0.33 <= speed_ratio <= 3 for speed_ratio in speed_ratios]):
success += 1
all_success.append(new_intervals_boundaries)
new_intervals_boundaries = torch.from_numpy(np.array(all_success))
# print(new_intervals_boundaries)
all_shapes = new_intervals_boundaries[:, 1:] - new_intervals_boundaries[:, :-1]
# Step 4: Adjust the speed of each new interval
adjusted_intervals = []
# print(equal_intervals[0].shape)
for i in range(4):
adjusted_interval = resize_motion_sequence_tensor(equal_intervals[i], all_shapes[0, i])
adjusted_intervals.append(adjusted_interval)
# Step 5: Concatenate the adjusted intervals
adjusted_chunk = torch.cat(adjusted_intervals, dim=1)
return adjusted_chunk
def compute_exact_iou(bbox1, bbox2):
x1 = max(bbox1[0], bbox2[0])
y1 = max(bbox1[1], bbox2[1])
x2 = min(bbox1[0] + bbox1[2], bbox2[0] + bbox2[2])
y2 = min(bbox1[1] + bbox1[3], bbox2[1] + bbox2[3])
intersection_area = max(0, x2 - x1) * max(0, y2 - y1)
bbox1_area = bbox1[2] * bbox1[3]
bbox2_area = bbox2[2] * bbox2[3]
union_area = bbox1_area + bbox2_area - intersection_area
if union_area == 0:
return 0
return intersection_area / union_area
def compute_iou(mask1, mask2):
# Compute the intersection
intersection = np.logical_and(mask1, mask2).sum()
# Compute the union
union = np.logical_or(mask1, mask2).sum()
# Compute the IoU
iou = intersection / union
return iou
def blankblending(all_frames, x, n):
return all_frames[x:x+n+1]
def synthesize_intermediate_frames_FILM(frame1, frame2, t, name, save_path):
import replicate
from urllib.request import urlretrieve
import os
cv2.imwrite(save_path[:-9]+name+"_frame1.png", frame1)
cv2.imwrite(save_path[:-9]+name+"_frame2.png", frame2)
os.environ["REPLICATE_API_TOKEN"] = "r8_He1rkPk9GAxNQ3LpOohK8sYw1SUfMYV3Fxk9b"
output = replicate.run(
"google-research/frame-interpolation:4f88a16a13673a8b589c18866e540556170a5bcb2ccdc12de556e800e9456d3d",
input={
"frame1": open(save_path[:-9]+name+"_frame1.png", "rb"),
"frame2": open(save_path[:-9]+name+"_frame2.png", "rb"),
"times_to_interpolate": t,
}
)
print(output)
urlretrieve(output, save_path[:-9]+name+"_inter.mp4")
return load_video_as_numpy_array(save_path[:-9]+name+"_inter.mp4")
def load_video_as_numpy_array(video_path):
cap = cv2.VideoCapture(video_path)
# Using list comprehension to read frames and store in a list
frames = [frame for ret, frame in iter(lambda: cap.read(), (False, None)) if ret]
cap.release()
return np.array(frames)
def synthesize_intermediate_frames_bidirectional(all_frames, x, n):
frame1 = all_frames[x]
frame2 = all_frames[x + n]
# Convert the frames to grayscale
gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
# Calculate the forward and backward optical flow
forward_flow = cv2.calcOpticalFlowFarneback(gray1, gray2, None, 0.5, 3, 15, 3, 5, 1.2, 0)
backward_flow = cv2.calcOpticalFlowFarneback(gray2, gray1, None, 0.5, 3, 15, 3, 5, 1.2, 0)
synthesized_frames = []
for i in range(1, n): # For each intermediate frame between x and x + n
alpha = i / n # Interpolation factor
# Compute the intermediate forward and backward flow
intermediate_forward_flow = forward_flow * alpha
intermediate_backward_flow = backward_flow * (1 - alpha)
# Warp the frames based on the intermediate flow
h, w = frame1.shape[:2]
flow_map = np.column_stack((np.repeat(np.arange(h), w), np.tile(np.arange(w), h)))
forward_displacement = flow_map + intermediate_forward_flow.reshape(-1, 2)
backward_displacement = flow_map - intermediate_backward_flow.reshape(-1, 2)
# Use cv2.remap for efficient warping
remap_x_forward, remap_y_forward = np.clip(forward_displacement[:, 1], 0, w - 1), np.clip(forward_displacement[:, 0], 0, h - 1)
remap_x_backward, remap_y_backward = np.clip(backward_displacement[:, 1], 0, w - 1), np.clip(backward_displacement[:, 0], 0, h - 1)
warped_forward = cv2.remap(frame1, remap_x_forward.reshape(h, w).astype(np.float32), remap_y_forward.reshape(h, w).astype(np.float32), interpolation=cv2.INTER_LINEAR)
warped_backward = cv2.remap(frame2, remap_x_backward.reshape(h, w).astype(np.float32), remap_y_backward.reshape(h, w).astype(np.float32), interpolation=cv2.INTER_LINEAR)
# Blend the warped frames to generate the intermediate frame
intermediate_frame = cv2.addWeighted(warped_forward, 1 - alpha, warped_backward, alpha, 0)
synthesized_frames.append(intermediate_frame)
return synthesized_frames # Return n-2 synthesized intermediate frames
def linear_interpolate_frames(all_frames, x, n):
frame1 = all_frames[x]
frame2 = all_frames[x + n]
synthesized_frames = []
for i in range(1, n): # For each intermediate frame between x and x + n
alpha = i / (n) # Correct interpolation factor
inter_frame = cv2.addWeighted(frame1, 1 - alpha, frame2, alpha, 0)
synthesized_frames.append(inter_frame)
return synthesized_frames[:-1]
def warp_frame(src_frame, flow):
h, w = flow.shape[:2]
flow_map = np.column_stack((np.repeat(np.arange(h), w), np.tile(np.arange(w), h)))
displacement = flow_map + flow.reshape(-1, 2)
# Extract x and y coordinates of the displacement
x_coords = np.clip(displacement[:, 1], 0, w - 1).reshape(h, w).astype(np.float32)
y_coords = np.clip(displacement[:, 0], 0, h - 1).reshape(h, w).astype(np.float32)
# Use cv2.remap for efficient warping
warped_frame = cv2.remap(src_frame, x_coords, y_coords, interpolation=cv2.INTER_LINEAR)
return warped_frame
def synthesize_intermediate_frames(all_frames, x, n):
# Calculate Optical Flow between the first and last frame
frame1 = cv2.cvtColor(all_frames[x], cv2.COLOR_BGR2GRAY)
frame2 = cv2.cvtColor(all_frames[x + n], cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(frame1, frame2, None, 0.5, 3, 15, 3, 5, 1.2, 0)
synthesized_frames = []
for i in range(1, n): # For each intermediate frame
alpha = i / (n) # Interpolation factor
intermediate_flow = flow * alpha # Interpolate the flow
intermediate_frame = warp_frame(all_frames[x], intermediate_flow) # Warp the first frame
synthesized_frames.append(intermediate_frame)
return synthesized_frames
def map2color(s):
m = hashlib.md5()
m.update(s.encode('utf-8'))
color_code = m.hexdigest()[:6]
return '#' + color_code
def euclidean_distance(a, b):
return np.sqrt(np.sum((a - b)**2))
def adjust_array(x, k):
len_x = len(x)
len_k = len(k)
# If x is shorter than k, pad with zeros
if len_x < len_k:
return np.pad(x, (0, len_k - len_x), 'constant')
# If x is longer than k, truncate x
elif len_x > len_k:
return x[:len_k]
# If both are of same length
else:
return x
def onset_to_frame(onset_times, audio_length, fps):
# Calculate total number of frames for the given audio length
total_frames = int(audio_length * fps)
# Create an array of zeros of shape (total_frames,)
frame_array = np.zeros(total_frames, dtype=np.int32)
# For each onset time, calculate the frame number and set it to 1
for onset in onset_times:
frame_num = int(onset * fps)
# Check if the frame number is within the array bounds
if 0 <= frame_num < total_frames:
frame_array[frame_num] = 1
return frame_array
# def np_slerp(q1, q2, t):
# dot_product = np.sum(q1 * q2, axis=-1)
# q2_flip = np.where(dot_product[:, None] < 0, -q2, q2) # Flip quaternions where dot_product is negative
# dot_product = np.abs(dot_product)
# angle = np.arccos(np.clip(dot_product, -1, 1))
# sin_angle = np.sin(angle)
# t1 = np.sin((1.0 - t) * angle) / sin_angle
# t2 = np.sin(t * angle) / sin_angle
# return t1 * q1 + t2 * q2_flip
def smooth_rotvec_animations(animation1, animation2, blend_frames):
"""
Smoothly transition between two animation clips using SLERP.
Parameters:
- animation1: The first animation clip, a numpy array of shape [n, k].
- animation2: The second animation clip, a numpy array of shape [n, k].
- blend_frames: Number of frames over which to blend the two animations.
Returns:
- A smoothly blended animation clip of shape [2n, k].
"""
# Ensure blend_frames doesn't exceed the length of either animation
n1, k1 = animation1.shape
n2, k2 = animation2.shape
animation1 = animation1.reshape(n1, k1//3, 3)
animation2 = animation2.reshape(n2, k2//3, 3)
blend_frames = min(blend_frames, len(animation1), len(animation2))
all_int = []
for i in range(k1//3):
# Convert rotation vectors to quaternion for the overlapping part
q = R.from_rotvec(np.concatenate([animation1[0:1, i], animation2[-2:-1, i]], axis=0))#.as_quat()
# q2 = R.from_rotvec()#.as_quat()
times = [0, blend_frames * 2 - 1]
slerp = Slerp(times, q)
interpolated = slerp(np.arange(blend_frames * 2))
interpolated_rotvecs = interpolated.as_rotvec()
all_int.append(interpolated_rotvecs)
interpolated_rotvecs = np.concatenate(all_int, axis=1)
# result = np.vstack((animation1[:-blend_frames], interpolated_rotvecs, animation2[blend_frames:]))
result = interpolated_rotvecs.reshape(2*n1, k1)
return result
def smooth_animations(animation1, animation2, blend_frames):
"""
Smoothly transition between two animation clips using linear interpolation.
Parameters:
- animation1: The first animation clip, a numpy array of shape [n, k].
- animation2: The second animation clip, a numpy array of shape [n, k].
- blend_frames: Number of frames over which to blend the two animations.
Returns:
- A smoothly blended animation clip of shape [2n, k].
"""
# Ensure blend_frames doesn't exceed the length of either animation
blend_frames = min(blend_frames, len(animation1), len(animation2))
# Extract overlapping sections
overlap_a1 = animation1[-blend_frames:-blend_frames+1, :]
overlap_a2 = animation2[blend_frames-1:blend_frames, :]
# Create blend weights for linear interpolation
alpha = np.linspace(0, 1, 2 * blend_frames).reshape(-1, 1)
# Linearly interpolate between overlapping sections
blended_overlap = overlap_a1 * (1 - alpha) + overlap_a2 * alpha
# Extend the animations to form the result with 2n frames
if blend_frames == len(animation1) and blend_frames == len(animation2):
result = blended_overlap
else:
before_blend = animation1[:-blend_frames]
after_blend = animation2[blend_frames:]
result = np.vstack((before_blend, blended_overlap, after_blend))
return result
def interpolate_sequence(quaternions):
bs, n, j, _ = quaternions.shape
new_n = 2 * n
new_quaternions = torch.zeros((bs, new_n, j, 4), device=quaternions.device, dtype=quaternions.dtype)
for i in range(n):
q1 = quaternions[:, i, :, :]
new_quaternions[:, 2*i, :, :] = q1
if i < n - 1:
q2 = quaternions[:, i + 1, :, :]
new_quaternions[:, 2*i + 1, :, :] = slerp(q1, q2, 0.5)
else:
# For the last point, duplicate the value
new_quaternions[:, 2*i + 1, :, :] = q1
return new_quaternions
def quaternion_multiply(q1, q2):
w1, x1, y1, z1 = q1
w2, x2, y2, z2 = q2
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2
z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2
return w, x, y, z
def quaternion_conjugate(q):
w, x, y, z = q
return (w, -x, -y, -z)
def slerp(q1, q2, t):
dot = torch.sum(q1 * q2, dim=-1, keepdim=True)
flip = (dot < 0).float()
q2 = (1 - flip * 2) * q2
dot = dot * (1 - flip * 2)
DOT_THRESHOLD = 0.9995
mask = (dot > DOT_THRESHOLD).float()
theta_0 = torch.acos(dot)
theta = theta_0 * t
q3 = q2 - q1 * dot
q3 = q3 / torch.norm(q3, dim=-1, keepdim=True)
interpolated = (torch.cos(theta) * q1 + torch.sin(theta) * q3)
return mask * (q1 + t * (q2 - q1)) + (1 - mask) * interpolated
def estimate_linear_velocity(data_seq, dt):
'''
Given some batched data sequences of T timesteps in the shape (B, T, ...), estimates
the velocity for the middle T-2 steps using a second order central difference scheme.
The first and last frames are with forward and backward first-order
differences, respectively
- h : step size
'''
# first steps is forward diff (t+1 - t) / dt
init_vel = (data_seq[:, 1:2] - data_seq[:, :1]) / dt
# middle steps are second order (t+1 - t-1) / 2dt
middle_vel = (data_seq[:, 2:] - data_seq[:, 0:-2]) / (2 * dt)
# last step is backward diff (t - t-1) / dt
final_vel = (data_seq[:, -1:] - data_seq[:, -2:-1]) / dt
vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1)
return vel_seq
def velocity2position(data_seq, dt, init_pos):
res_trans = []
for i in range(data_seq.shape[1]):
if i == 0:
res_trans.append(init_pos.unsqueeze(1))
else:
res = data_seq[:, i-1:i] * dt + res_trans[-1]
res_trans.append(res)
return torch.cat(res_trans, dim=1)
def estimate_angular_velocity(rot_seq, dt):
'''
Given a batch of sequences of T rotation matrices, estimates angular velocity at T-2 steps.
Input sequence should be of shape (B, T, ..., 3, 3)
'''
# see https://en.wikipedia.org/wiki/Angular_velocity#Calculation_from_the_orientation_matrix
dRdt = estimate_linear_velocity(rot_seq, dt)
R = rot_seq
RT = R.transpose(-1, -2)
# compute skew-symmetric angular velocity tensor
w_mat = torch.matmul(dRdt, RT)
# pull out angular velocity vector by averaging symmetric entries
w_x = (-w_mat[..., 1, 2] + w_mat[..., 2, 1]) / 2.0
w_y = (w_mat[..., 0, 2] - w_mat[..., 2, 0]) / 2.0
w_z = (-w_mat[..., 0, 1] + w_mat[..., 1, 0]) / 2.0
w = torch.stack([w_x, w_y, w_z], axis=-1)
return w
def image_from_bytes(image_bytes):
import matplotlib.image as mpimg
from io import BytesIO
return mpimg.imread(BytesIO(image_bytes), format='PNG')
def process_frame(i, vertices_all, vertices1_all, faces, output_dir, filenames):
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import trimesh
import pyrender
def deg_to_rad(degrees):
return degrees * np.pi / 180
uniform_color = [220, 220, 220, 255]
resolution = (1000, 1000)
figsize = (10, 10)
fig, axs = plt.subplots(
nrows=1,
ncols=2,
figsize=(figsize[0] * 2, figsize[1] * 1)
)
axs = axs.flatten()
vertices = vertices_all[i]
vertices1 = vertices1_all[i]
filename = f"{output_dir}frame_{i}.png"
filenames.append(filename)
if i%100 == 0:
print('processed', i, 'frames')
#time_s = time.time()
#print(vertices.shape)
angle_rad = deg_to_rad(-2)
pose_camera = np.array([
[1.0, 0.0, 0.0, 0.0],
[0.0, np.cos(angle_rad), -np.sin(angle_rad), 1.0],
[0.0, np.sin(angle_rad), np.cos(angle_rad), 5.0],
[0.0, 0.0, 0.0, 1.0]
])
angle_rad = deg_to_rad(-30)
pose_light = np.array([
[1.0, 0.0, 0.0, 0.0],
[0.0, np.cos(angle_rad), -np.sin(angle_rad), 0.0],
[0.0, np.sin(angle_rad), np.cos(angle_rad), 3.0],
[0.0, 0.0, 0.0, 1.0]
])
for vtx_idx, vtx in enumerate([vertices, vertices1]):
trimesh_mesh = trimesh.Trimesh(
vertices=vtx,
faces=faces,
vertex_colors=uniform_color
)
mesh = pyrender.Mesh.from_trimesh(
trimesh_mesh, smooth=True
)
scene = pyrender.Scene()
scene.add(mesh)
camera = pyrender.OrthographicCamera(xmag=1.0, ymag=1.0)
scene.add(camera, pose=pose_camera)
light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=4.0)
scene.add(light, pose=pose_light)
renderer = pyrender.OffscreenRenderer(*resolution)
color, _ = renderer.render(scene)
axs[vtx_idx].imshow(color)
axs[vtx_idx].axis('off')
renderer.delete()
plt.savefig(filename, bbox_inches='tight')
plt.close(fig)
def generate_images(frames, vertices_all, vertices1_all, faces, output_dir, filenames):
import multiprocessing
# import trimesh
num_cores = multiprocessing.cpu_count() - 1 # This will get the number of cores on your machine.
# mesh = trimesh.Trimesh(vertices_all[0], faces)
# scene = mesh.scene()
# fov = scene.camera.fov.copy()
# fov[0] = 80.0
# fov[1] = 60.0
# camera_params = {
# 'fov': fov,
# 'resolution': scene.camera.resolution,
# 'focal': scene.camera.focal,
# 'z_near': scene.camera.z_near,
# "z_far": scene.camera.z_far,
# 'transform': scene.graph[scene.camera.name][0]
# }
# mesh1 = trimesh.Trimesh(vertices1_all[0], faces)
# scene1 = mesh1.scene()
# camera_params1 = {
# 'fov': fov,
# 'resolution': scene1.camera.resolution,
# 'focal': scene1.camera.focal,
# 'z_near': scene1.camera.z_near,
# "z_far": scene1.camera.z_far,
# 'transform': scene1.graph[scene1.camera.name][0]
# }
# Use a Pool to manage the processes
# print(num_cores)
# for i in range(frames):
# process_frame(i, vertices_all, vertices1_all, faces, output_dir, use_matplotlib, filenames, camera_params, camera_params1)
for i in range(frames):
process_frame(i*3, vertices_all, vertices1_all, faces, output_dir, filenames)
# progress = multiprocessing.Value('i', 0)
# lock = multiprocessing.Lock()
# with multiprocessing.Pool(num_cores) as pool:
# # pool.starmap(process_frame, [(i, vertices_all, vertices1_all, faces, output_dir, use_matplotlib, filenames, camera_params, camera_params1) for i in range(frames)])
# pool.starmap(
# process_frame,
# [
# (i, vertices_all, vertices1_all, faces, output_dir, filenames)
# for i in range(frames)
# ]
# )
# progress = multiprocessing.Value('i', 0)
# lock = multiprocessing.Lock()
# with multiprocessing.Pool(num_cores) as pool:
# # pool.starmap(process_frame, [(i, vertices_all, vertices1_all, faces, output_dir, use_matplotlib, filenames, camera_params, camera_params1) for i in range(frames)])
# pool.starmap(
# process_frame,
# [
# (i, vertices_all, vertices1_all, faces, output_dir, filenames)
# for i in range(frames)
# ]
# )
def render_one_sequence(
res_npz_path,
gt_npz_path,
output_dir,
audio_path,
model_folder="/data/datasets/smplx_models/",
model_type='smplx',
gender='NEUTRAL_2020',
ext='npz',
num_betas=300,
num_expression_coeffs=100,
use_face_contour=False,
use_matplotlib=False,
args=None):
import smplx
import matplotlib.pyplot as plt
import imageio
from tqdm import tqdm
import os
import numpy as np
import torch
import moviepy.editor as mp
import librosa
model = smplx.create(model_folder, model_type=model_type,
gender=gender, use_face_contour=use_face_contour,
num_betas=num_betas,
num_expression_coeffs=num_expression_coeffs,
ext=ext, use_pca=False).cuda()
#data_npz = np.load(f"{output_dir}{res_npz_path}.npz")
data_np_body = np.load(res_npz_path, allow_pickle=True)
gt_np_body = np.load(gt_npz_path, allow_pickle=True)
if not os.path.exists(output_dir): os.makedirs(output_dir)
# if not use_matplotlib:
# import trimesh
#import pyrender
from pyvirtualdisplay import Display
#'''
#display = Display(visible=0, size=(1000, 1000))
#display.start()
faces = np.load(f"{model_folder}/smplx/SMPLX_NEUTRAL_2020.npz", allow_pickle=True)["f"]
seconds = 1
#data_npz["jaw_pose"].shape[0]
n = data_np_body["poses"].shape[0]
beta = torch.from_numpy(data_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda()
beta = beta.repeat(n, 1)
expression = torch.from_numpy(data_np_body["expressions"][:n]).to(torch.float32).cuda()
jaw_pose = torch.from_numpy(data_np_body["poses"][:n, 66:69]).to(torch.float32).cuda()
pose = torch.from_numpy(data_np_body["poses"][:n]).to(torch.float32).cuda()
transl = torch.from_numpy(data_np_body["trans"][:n]).to(torch.float32).cuda()
# print(beta.shape, expression.shape, jaw_pose.shape, pose.shape, transl.shape, pose[:,:3].shape)
output = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose,
global_orient=pose[:,:3], body_pose=pose[:,3:21*3+3], left_hand_pose=pose[:,25*3:40*3], right_hand_pose=pose[:,40*3:55*3],
leye_pose=pose[:, 69:72],
reye_pose=pose[:, 72:75],
return_verts=True)
vertices_all = output["vertices"].cpu().detach().numpy()
beta1 = torch.from_numpy(gt_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda()
expression1 = torch.from_numpy(gt_np_body["expressions"][:n]).to(torch.float32).cuda()
jaw_pose1 = torch.from_numpy(gt_np_body["poses"][:n,66:69]).to(torch.float32).cuda()
pose1 = torch.from_numpy(gt_np_body["poses"][:n]).to(torch.float32).cuda()
transl1 = torch.from_numpy(gt_np_body["trans"][:n]).to(torch.float32).cuda()
output1 = model(betas=beta1, transl=transl1, expression=expression1, jaw_pose=jaw_pose1, global_orient=pose1[:,:3], body_pose=pose1[:,3:21*3+3], left_hand_pose=pose1[:,25*3:40*3], right_hand_pose=pose1[:,40*3:55*3],
leye_pose=pose1[:, 69:72],
reye_pose=pose1[:, 72:75],return_verts=True)
vertices1_all = output1["vertices"].cpu().detach().numpy()
if args.debug:
seconds = 1
else:
seconds = vertices_all.shape[0]//30
silent_video_file_path = utils.fast_render.generate_silent_videos(args.render_video_fps,
args.render_video_width,
args.render_video_height,
args.render_concurrent_num,
args.render_tmp_img_filetype,
int(seconds*args.render_video_fps),
vertices_all,
vertices1_all,
faces,
output_dir)
base_filename_without_ext = os.path.splitext(os.path.basename(res_npz_path))[0]
final_clip = os.path.join(output_dir, f"{base_filename_without_ext}.mp4")
utils.media.add_audio_to_video(silent_video_file_path, audio_path, final_clip)
os.remove(silent_video_file_path)
return final_clip
def render_one_sequence_no_gt(
res_npz_path,
output_dir,
audio_path,
model_folder="/data/datasets/smplx_models/",
model_type='smplx',
gender='NEUTRAL_2020',
ext='npz',
num_betas=300,
num_expression_coeffs=100,
use_face_contour=False,
use_matplotlib=False,
args=None):
import smplx
import matplotlib.pyplot as plt
import imageio
from tqdm import tqdm
import os
import numpy as np
import torch
import moviepy.editor as mp
import librosa
model = smplx.create(model_folder, model_type=model_type,
gender=gender, use_face_contour=use_face_contour,
num_betas=num_betas,
num_expression_coeffs=num_expression_coeffs,
ext=ext, use_pca=False).cuda()
#data_npz = np.load(f"{output_dir}{res_npz_path}.npz")
data_np_body = np.load(res_npz_path, allow_pickle=True)
# gt_np_body = np.load(gt_npz_path, allow_pickle=True)
if not os.path.exists(output_dir): os.makedirs(output_dir)
# if not use_matplotlib:
# import trimesh
#import pyrender
from pyvirtualdisplay import Display
#'''
#display = Display(visible=0, size=(1000, 1000))
#display.start()
faces = np.load(f"{model_folder}/smplx/SMPLX_NEUTRAL_2020.npz", allow_pickle=True)["f"]
seconds = 1
#data_npz["jaw_pose"].shape[0]
n = data_np_body["poses"].shape[0]
beta = torch.from_numpy(data_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda()
beta = beta.repeat(n, 1)
expression = torch.from_numpy(data_np_body["expressions"][:n]).to(torch.float32).cuda()
jaw_pose = torch.from_numpy(data_np_body["poses"][:n, 66:69]).to(torch.float32).cuda()
pose = torch.from_numpy(data_np_body["poses"][:n]).to(torch.float32).cuda()
transl = torch.from_numpy(data_np_body["trans"][:n]).to(torch.float32).cuda()
# print(beta.shape, expression.shape, jaw_pose.shape, pose.shape, transl.shape, pose[:,:3].shape)
output = model(betas=beta, transl=transl, expression=expression, jaw_pose=jaw_pose,
global_orient=pose[:,:3], body_pose=pose[:,3:21*3+3], left_hand_pose=pose[:,25*3:40*3], right_hand_pose=pose[:,40*3:55*3],
leye_pose=pose[:, 69:72],
reye_pose=pose[:, 72:75],
return_verts=True)
vertices_all = output["vertices"].cpu().detach().numpy()
# beta1 = torch.from_numpy(gt_np_body["betas"]).to(torch.float32).unsqueeze(0).cuda()
# expression1 = torch.from_numpy(gt_np_body["expressions"][:n]).to(torch.float32).cuda()
# jaw_pose1 = torch.from_numpy(gt_np_body["poses"][:n,66:69]).to(torch.float32).cuda()
# pose1 = torch.from_numpy(gt_np_body["poses"][:n]).to(torch.float32).cuda()
# transl1 = torch.from_numpy(gt_np_body["trans"][:n]).to(torch.float32).cuda()
# output1 = model(betas=beta1, transl=transl1, expression=expression1, jaw_pose=jaw_pose1, global_orient=pose1[:,:3], body_pose=pose1[:,3:21*3+3], left_hand_pose=pose1[:,25*3:40*3], right_hand_pose=pose1[:,40*3:55*3],
# leye_pose=pose1[:, 69:72],
# reye_pose=pose1[:, 72:75],return_verts=True)
# vertices1_all = output1["vertices"].cpu().detach().numpy()
if args.debug:
seconds = 1
else:
seconds = vertices_all.shape[0]//30
silent_video_file_path = utils.fast_render.generate_silent_videos_no_gt(args.render_video_fps,
args.render_video_width,
args.render_video_height,
args.render_concurrent_num,
args.render_tmp_img_filetype,
int(seconds*args.render_video_fps),
vertices_all,
faces,
output_dir)
base_filename_without_ext = os.path.splitext(os.path.basename(res_npz_path))[0]
final_clip = os.path.join(output_dir, f"{base_filename_without_ext}.mp4")
utils.media.add_audio_to_video(silent_video_file_path, audio_path, final_clip)
os.remove(silent_video_file_path)
return final_clip
def print_exp_info(args):
logger.info(pprint.pformat(vars(args)))
logger.info(f"# ------------ {args.name} ----------- #")
logger.info("PyTorch version: {}".format(torch.__version__))
logger.info("CUDA version: {}".format(torch.version.cuda))
logger.info("{} GPUs".format(torch.cuda.device_count()))
logger.info(f"Random Seed: {args.random_seed}")
def args2csv(args, get_head=False, list4print=[]):
for k, v in args.items():
if isinstance(args[k], dict):
args2csv(args[k], get_head, list4print)
else: list4print.append(k) if get_head else list4print.append(v)
return list4print
class EpochTracker:
def __init__(self, metric_names, metric_directions):
assert len(metric_names) == len(metric_directions), "Metric names and directions should have the same length"
self.metric_names = metric_names
self.states = ['train', 'val', 'test']
self.types = ['last', 'best']
self.values = {name: {state: {type_: {'value': np.inf if not is_higher_better else -np.inf, 'epoch': 0}
for type_ in self.types}
for state in self.states}
for name, is_higher_better in zip(metric_names, metric_directions)}
self.loss_meters = {name: {state: AverageMeter(f"{name}_{state}")
for state in self.states}
for name in metric_names}
self.is_higher_better = {name: direction for name, direction in zip(metric_names, metric_directions)}
self.train_history = {name: [] for name in metric_names}
self.val_history = {name: [] for name in metric_names}
def update_meter(self, name, state, value):
self.loss_meters[name][state].update(value)
def update_values(self, name, state, epoch):
value_avg = self.loss_meters[name][state].avg
new_best = False
if ((value_avg < self.values[name][state]['best']['value'] and not self.is_higher_better[name]) or
(value_avg > self.values[name][state]['best']['value'] and self.is_higher_better[name])):
self.values[name][state]['best']['value'] = value_avg
self.values[name][state]['best']['epoch'] = epoch
new_best = True
self.values[name][state]['last']['value'] = value_avg
self.values[name][state]['last']['epoch'] = epoch
return new_best
def get(self, name, state, type_):
return self.values[name][state][type_]
def reset(self):
for name in self.metric_names:
for state in self.states:
self.loss_meters[name][state].reset()
def flatten_values(self):
flat_dict = {}
for name in self.metric_names:
for state in self.states:
for type_ in self.types:
value_key = f"{name}_{state}_{type_}"
epoch_key = f"{name}_{state}_{type_}_epoch"
flat_dict[value_key] = self.values[name][state][type_]['value']
flat_dict[epoch_key] = self.values[name][state][type_]['epoch']
return flat_dict
def update_and_plot(self, name, epoch, save_path):
new_best_train = self.update_values(name, 'train', epoch)
new_best_val = self.update_values(name, 'val', epoch)
self.train_history[name].append(self.loss_meters[name]['train'].avg)
self.val_history[name].append(self.loss_meters[name]['val'].avg)
train_values = self.train_history[name]
val_values = self.val_history[name]
epochs = list(range(1, len(train_values) + 1))
plt.figure(figsize=(10, 6))
plt.plot(epochs, train_values, label='Train')
plt.plot(epochs, val_values, label='Val')
plt.title(f'Train vs Val {name} over epochs')
plt.xlabel('Epochs')
plt.ylabel(name)
plt.legend()
plt.savefig(save_path)
plt.close()
return new_best_train, new_best_val
def record_trial(args, tracker):
"""
1. record notes, score, env_name, experments_path,
"""
csv_path = args.out_path + "custom/" +args.csv_name+".csv"
all_print_dict = vars(args)
all_print_dict.update(tracker.flatten_values())
if not os.path.exists(csv_path):
pd.DataFrame([all_print_dict]).to_csv(csv_path, index=False)
else:
df_existing = pd.read_csv(csv_path)
df_new = pd.DataFrame([all_print_dict])
df_aligned = df_existing.append(df_new).fillna("")
df_aligned.to_csv(csv_path, index=False)
def set_random_seed(args):
os.environ['PYTHONHASHSEED'] = str(args.random_seed)
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
torch.backends.cudnn.deterministic = args.deterministic #args.CUDNN_DETERMINISTIC
torch.backends.cudnn.benchmark = args.benchmark
torch.backends.cudnn.enabled = args.cudnn_enabled
def save_checkpoints(save_path, model, opt=None, epoch=None, lrs=None):
if lrs is not None:
states = { 'model_state': model.state_dict(),
'epoch': epoch + 1,
'opt_state': opt.state_dict(),
'lrs':lrs.state_dict(),}
elif opt is not None:
states = { 'model_state': model.state_dict(),
'epoch': epoch + 1,
'opt_state': opt.state_dict(),}
else:
states = { 'model_state': model.state_dict(),}
torch.save(states, save_path)
def load_checkpoints(model, save_path, load_name='model'):
states = torch.load(save_path)
new_weights = OrderedDict()
flag=False
for k, v in states['model_state'].items():
#print(k)
if "module" not in k:
break
else:
new_weights[k[7:]]=v
flag=True
if flag:
try:
model.load_state_dict(new_weights)
except:
#print(states['model_state'])
model.load_state_dict(states['model_state'])
else:
model.load_state_dict(states['model_state'])
logger.info(f"load self-pretrained checkpoints for {load_name}")
def model_complexity(model, args):
from ptflops import get_model_complexity_info
flops, params = get_model_complexity_info(model, (args.T_GLOBAL._DIM, args.TRAIN.CROP, args.TRAIN),
as_strings=False, print_per_layer_stat=False)
logging.info('{:<30} {:<8} BFlops'.format('Computational complexity: ', flops / 1e9))
logging.info('{:<30} {:<8} MParams'.format('Number of parameters: ', params / 1e6))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__) |