File size: 33,636 Bytes
2d47d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
import spaces
import os
# os.system("Xvfb :99 -ac &")
# os.environ["DISPLAY"] = ":99"
import OpenGL.GL as gl
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
import signal
import time
import csv
import sys
import warnings
import random
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp
import numpy as np
import time
import pprint
from loguru import logger
import smplx
from torch.utils.tensorboard import SummaryWriter
import wandb
import matplotlib.pyplot as plt
from utils import config, logger_tools, other_tools_hf, metric, data_transfer
from dataloaders import data_tools
from dataloaders.build_vocab import Vocab
from optimizers.optim_factory import create_optimizer
from optimizers.scheduler_factory import create_scheduler
from optimizers.loss_factory import get_loss_func
from dataloaders.data_tools import joints_list
from utils import rotation_conversions as rc
import soundfile as sf
import librosa
def inverse_selection_tensor(filtered_t, selection_array, n):
selection_array = torch.from_numpy(selection_array).cuda()
original_shape_t = torch.zeros((n, 165)).cuda()
selected_indices = torch.where(selection_array == 1)[0]
for i in range(n):
original_shape_t[i, selected_indices] = filtered_t[i]
return original_shape_t
@spaces.GPU(duration=120)
def test_demo_gpu(
model, vq_model_face, vq_model_upper, vq_model_hands, vq_model_lower, global_motion, smplx_model,
dict_data,
args,
joints, joint_mask_upper, joint_mask_lower, joint_mask_hands,
log_softmax,
):
rank = 0
other_tools_hf.load_checkpoints(vq_model_face, args.data_path_1 + "pretrained_vq/last_790_face_v2.bin", args.e_name)
other_tools_hf.load_checkpoints(vq_model_upper, args.data_path_1 + "pretrained_vq/upper_vertex_1layer_710.bin", args.e_name)
other_tools_hf.load_checkpoints(vq_model_hands, args.data_path_1 + "pretrained_vq/hands_vertex_1layer_710.bin", args.e_name)
other_tools_hf.load_checkpoints(vq_model_lower, args.data_path_1 + "pretrained_vq/lower_foot_600.bin", args.e_name)
other_tools_hf.load_checkpoints(global_motion, args.data_path_1 + "pretrained_vq/last_1700_foot.bin", args.e_name)
other_tools_hf.load_checkpoints(model, args.test_ckpt, args.g_name)
model.to(rank).eval()
smplx_model.to(rank).eval()
vq_model_face.to(rank).eval()
vq_model_upper.to(rank).eval()
vq_model_hands.to(rank).eval()
vq_model_lower.to(rank).eval()
global_motion.to(rank).eval()
with torch.no_grad():
tar_pose_raw = dict_data["pose"]
tar_pose = tar_pose_raw[:, :, :165].to(rank)
tar_contact = tar_pose_raw[:, :, 165:169].to(rank)
tar_trans = dict_data["trans"].to(rank)
tar_exps = dict_data["facial"].to(rank)
in_audio = dict_data["audio"].to(rank)
in_word = None# dict_data["word"].to(rank)
tar_beta = dict_data["beta"].to(rank)
tar_id = dict_data["id"].to(rank).long()
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], joints
tar_pose_jaw = tar_pose[:, :, 66:69]
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3))
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6)
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2)
tar_pose_hands = tar_pose[:, :, 25*3:55*3]
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
tar_pose_upper = tar_pose[:, :, joint_mask_upper.astype(bool)]
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
tar_pose_leg = tar_pose[:, :, joint_mask_lower.astype(bool)]
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2)
# tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3))
# tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
tar4dis = torch.cat([tar_pose_jaw, tar_pose_upper, tar_pose_hands, tar_pose_leg], dim=2)
tar_index_value_face_top = vq_model_face.map2index(tar_pose_face) # bs*n/4
tar_index_value_upper_top = vq_model_upper.map2index(tar_pose_upper) # bs*n/4
tar_index_value_hands_top = vq_model_hands.map2index(tar_pose_hands) # bs*n/4
tar_index_value_lower_top = vq_model_lower.map2index(tar_pose_lower) # bs*n/4
latent_face_top = vq_model_face.map2latent(tar_pose_face) # bs*n/4
latent_upper_top = vq_model_upper.map2latent(tar_pose_upper) # bs*n/4
latent_hands_top = vq_model_hands.map2latent(tar_pose_hands) # bs*n/4
latent_lower_top = vq_model_lower.map2latent(tar_pose_lower) # bs*n/4
latent_in = torch.cat([latent_upper_top, latent_hands_top, latent_lower_top], dim=2)
index_in = torch.stack([tar_index_value_upper_top, tar_index_value_hands_top, tar_index_value_lower_top], dim=-1).long()
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6)
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1)
loaded_data = {
"tar_pose_jaw": tar_pose_jaw,
"tar_pose_face": tar_pose_face,
"tar_pose_upper": tar_pose_upper,
"tar_pose_lower": tar_pose_lower,
"tar_pose_hands": tar_pose_hands,
'tar_pose_leg': tar_pose_leg,
"in_audio": in_audio,
"in_word": in_word,
"tar_trans": tar_trans,
"tar_exps": tar_exps,
"tar_beta": tar_beta,
"tar_pose": tar_pose,
"tar4dis": tar4dis,
"tar_index_value_face_top": tar_index_value_face_top,
"tar_index_value_upper_top": tar_index_value_upper_top,
"tar_index_value_hands_top": tar_index_value_hands_top,
"tar_index_value_lower_top": tar_index_value_lower_top,
"latent_face_top": latent_face_top,
"latent_upper_top": latent_upper_top,
"latent_hands_top": latent_hands_top,
"latent_lower_top": latent_lower_top,
"latent_in": latent_in,
"index_in": index_in,
"tar_id": tar_id,
"latent_all": latent_all,
"tar_pose_6d": tar_pose_6d,
"tar_contact": tar_contact,
}
mode = 'test'
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], joints
tar_pose = loaded_data["tar_pose"]
tar_beta = loaded_data["tar_beta"]
in_word =None# loaded_data["in_word"]
tar_exps = loaded_data["tar_exps"]
tar_contact = loaded_data["tar_contact"]
in_audio = loaded_data["in_audio"]
tar_trans = loaded_data["tar_trans"]
remain = n%8
if remain != 0:
tar_pose = tar_pose[:, :-remain, :]
tar_beta = tar_beta[:, :-remain, :]
tar_trans = tar_trans[:, :-remain, :]
# in_word = in_word[:, :-remain]
tar_exps = tar_exps[:, :-remain, :]
tar_contact = tar_contact[:, :-remain, :]
n = n - remain
tar_pose_jaw = tar_pose[:, :, 66:69]
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3))
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6)
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2)
tar_pose_hands = tar_pose[:, :, 25*3:55*3]
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3))
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6)
tar_pose_upper = tar_pose[:, :, joint_mask_upper.astype(bool)]
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3))
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6)
tar_pose_leg = tar_pose[:, :, joint_mask_lower.astype(bool)]
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3))
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6)
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2)
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3))
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6)
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1)
rec_index_all_face = []
rec_index_all_upper = []
rec_index_all_lower = []
rec_index_all_hands = []
roundt = (n - args.pre_frames) // (args.pose_length - args.pre_frames)
remain = (n - args.pre_frames) % (args.pose_length - args.pre_frames)
round_l = args.pose_length - args.pre_frames
for i in range(0, roundt):
# in_word_tmp = in_word[:, i*(round_l):(i+1)*(round_l)+args.pre_frames]
# audio fps is 16000 and pose fps is 30
in_audio_tmp = in_audio[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*args.pre_frames]
in_id_tmp = loaded_data['tar_id'][:, i*(round_l):(i+1)*(round_l)+args.pre_frames]
mask_val = torch.ones(bs, args.pose_length, args.pose_dims+3+4).float().cuda()
mask_val[:, :args.pre_frames, :] = 0.0
if i == 0:
latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+args.pre_frames, :]
else:
latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+args.pre_frames, :]
# print(latent_all_tmp.shape, latent_last.shape)
latent_all_tmp[:, :args.pre_frames, :] = latent_last[:, -args.pre_frames:, :]
net_out_val = model(
in_audio = in_audio_tmp,
in_word=None, #in_word_tmp,
mask=mask_val,
in_motion = latent_all_tmp,
in_id = in_id_tmp,
use_attentions=True,)
if args.cu != 0:
rec_index_upper = log_softmax(net_out_val["cls_upper"]).reshape(-1, args.vae_codebook_size)
_, rec_index_upper = torch.max(rec_index_upper.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2)
#rec_upper = vq_model_upper.decode(rec_index_upper)
else:
_, rec_index_upper, _, _ = vq_model_upper.quantizer(net_out_val["rec_upper"])
#rec_upper = vq_model_upper.decoder(rec_index_upper)
if args.cl != 0:
rec_index_lower = log_softmax(net_out_val["cls_lower"]).reshape(-1, args.vae_codebook_size)
_, rec_index_lower = torch.max(rec_index_lower.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2)
#rec_lower = vq_model_lower.decode(rec_index_lower)
else:
_, rec_index_lower, _, _ = vq_model_lower.quantizer(net_out_val["rec_lower"])
#rec_lower = vq_model_lower.decoder(rec_index_lower)
if args.ch != 0:
rec_index_hands = log_softmax(net_out_val["cls_hands"]).reshape(-1, args.vae_codebook_size)
_, rec_index_hands = torch.max(rec_index_hands.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2)
#rec_hands = vq_model_hands.decode(rec_index_hands)
else:
_, rec_index_hands, _, _ = vq_model_hands.quantizer(net_out_val["rec_hands"])
#rec_hands = vq_model_hands.decoder(rec_index_hands)
if args.cf != 0:
rec_index_face = log_softmax(net_out_val["cls_face"]).reshape(-1, args.vae_codebook_size)
_, rec_index_face = torch.max(rec_index_face.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2)
#rec_face = vq_model_face.decoder(rec_index_face)
else:
_, rec_index_face, _, _ = vq_model_face.quantizer(net_out_val["rec_face"])
#rec_face = vq_model_face.decoder(rec_index_face)
if i == 0:
rec_index_all_face.append(rec_index_face)
rec_index_all_upper.append(rec_index_upper)
rec_index_all_lower.append(rec_index_lower)
rec_index_all_hands.append(rec_index_hands)
else:
rec_index_all_face.append(rec_index_face[:, args.pre_frames:])
rec_index_all_upper.append(rec_index_upper[:, args.pre_frames:])
rec_index_all_lower.append(rec_index_lower[:, args.pre_frames:])
rec_index_all_hands.append(rec_index_hands[:, args.pre_frames:])
if args.cu != 0:
rec_upper_last = vq_model_upper.decode(rec_index_upper)
else:
rec_upper_last = vq_model_upper.decoder(rec_index_upper)
if args.cl != 0:
rec_lower_last = vq_model_lower.decode(rec_index_lower)
else:
rec_lower_last = vq_model_lower.decoder(rec_index_lower)
if args.ch != 0:
rec_hands_last = vq_model_hands.decode(rec_index_hands)
else:
rec_hands_last = vq_model_hands.decoder(rec_index_hands)
# if args.cf != 0:
# rec_face_last = vq_model_face.decode(rec_index_face)
# else:
# rec_face_last = vq_model_face.decoder(rec_index_face)
rec_pose_legs = rec_lower_last[:, :, :54]
bs, n = rec_pose_legs.shape[0], rec_pose_legs.shape[1]
rec_pose_upper = rec_upper_last.reshape(bs, n, 13, 6)
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)#
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3)
rec_pose_upper_recover = inverse_selection_tensor(rec_pose_upper, joint_mask_upper, bs*n)
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6)
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower)
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3)
rec_pose_lower_recover = inverse_selection_tensor(rec_pose_lower, joint_mask_lower, bs*n)
rec_pose_hands = rec_hands_last.reshape(bs, n, 30, 6)
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands)
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3)
rec_pose_hands_recover = inverse_selection_tensor(rec_pose_hands, joint_mask_hands, bs*n)
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs, n, j, 3))
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
rec_trans_v_s = rec_lower_last[:, :, 54:57]
rec_x_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 0:1], 1/args.pose_fps, tar_trans[:, 0, 0:1])
rec_z_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 2:3], 1/args.pose_fps, tar_trans[:, 0, 2:3])
rec_y_trans = rec_trans_v_s[:,:,1:2]
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
latent_last = torch.cat([rec_pose, rec_trans, rec_lower_last[:, :, 57:61]], dim=-1)
rec_index_face = torch.cat(rec_index_all_face, dim=1)
rec_index_upper = torch.cat(rec_index_all_upper, dim=1)
rec_index_lower = torch.cat(rec_index_all_lower, dim=1)
rec_index_hands = torch.cat(rec_index_all_hands, dim=1)
if args.cu != 0:
rec_upper = vq_model_upper.decode(rec_index_upper)
else:
rec_upper = vq_model_upper.decoder(rec_index_upper)
if args.cl != 0:
rec_lower = vq_model_lower.decode(rec_index_lower)
else:
rec_lower = vq_model_lower.decoder(rec_index_lower)
if args.ch != 0:
rec_hands = vq_model_hands.decode(rec_index_hands)
else:
rec_hands = vq_model_hands.decoder(rec_index_hands)
if args.cf != 0:
rec_face = vq_model_face.decode(rec_index_face)
else:
rec_face = vq_model_face.decoder(rec_index_face)
rec_exps = rec_face[:, :, 6:]
rec_pose_jaw = rec_face[:, :, :6]
rec_pose_legs = rec_lower[:, :, :54]
bs, n = rec_pose_jaw.shape[0], rec_pose_jaw.shape[1]
rec_pose_upper = rec_upper.reshape(bs, n, 13, 6)
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)#
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3)
rec_pose_upper_recover = inverse_selection_tensor(rec_pose_upper, joint_mask_upper, bs*n)
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6)
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower)
rec_lower2global = rc.matrix_to_rotation_6d(rec_pose_lower.clone()).reshape(bs, n, 9*6)
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3)
rec_pose_lower_recover = inverse_selection_tensor(rec_pose_lower, joint_mask_lower, bs*n)
rec_pose_hands = rec_hands.reshape(bs, n, 30, 6)
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands)
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3)
rec_pose_hands_recover = inverse_selection_tensor(rec_pose_hands, joint_mask_hands, bs*n)
rec_pose_jaw = rec_pose_jaw.reshape(bs*n, 6)
rec_pose_jaw = rc.rotation_6d_to_matrix(rec_pose_jaw)
rec_pose_jaw = rc.matrix_to_axis_angle(rec_pose_jaw).reshape(bs*n, 1*3)
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover
rec_pose[:, 66:69] = rec_pose_jaw
to_global = rec_lower
to_global[:, :, 54:57] = 0.0
to_global[:, :, :54] = rec_lower2global
rec_global = global_motion(to_global)
rec_trans_v_s = rec_global["rec_pose"][:, :, 54:57]
rec_x_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 0:1], 1/args.pose_fps, tar_trans[:, 0, 0:1])
rec_z_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 2:3], 1/args.pose_fps, tar_trans[:, 0, 2:3])
rec_y_trans = rec_trans_v_s[:,:,1:2]
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1)
tar_pose = tar_pose[:, :n, :]
tar_exps = tar_exps[:, :n, :]
tar_trans = tar_trans[:, :n, :]
tar_beta = tar_beta[:, :n, :]
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs*n, j, 3))
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6)
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs*n, j, 3))
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6)
net_out = {
'rec_pose': rec_pose,
'rec_trans': rec_trans,
'tar_pose': tar_pose,
'tar_exps': tar_exps,
'tar_beta': tar_beta,
'tar_trans': tar_trans,
'rec_exps': rec_exps,
}
tar_pose = net_out['tar_pose']
rec_pose = net_out['rec_pose']
tar_exps = net_out['tar_exps']
tar_beta = net_out['tar_beta']
rec_trans = net_out['rec_trans']
tar_trans = net_out['tar_trans']
rec_exps = net_out['rec_exps']
# print(rec_pose.shape, tar_pose.shape)
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], joints
# interpolate to 30fps
if (30/args.pose_fps) != 1:
assert 30%args.pose_fps == 0
n *= int(30/args.pose_fps)
tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/args.pose_fps, mode='linear').permute(0,2,1)
rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/args.pose_fps, mode='linear').permute(0,2,1)
# print(rec_pose.shape, tar_pose.shape)
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6))
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3)
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6))
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3)
return tar_pose, rec_pose, tar_exps, tar_beta, rec_trans, tar_trans, rec_exps, bs, n, j
class BaseTrainer(object):
def __init__(self, args, sp, ap, tp):
hf_dir = "hf"
if not os.path.exists(args.out_path + "custom/" + hf_dir + "/"):
os.makedirs(args.out_path + "custom/" + hf_dir + "/")
sf.write(args.out_path + "custom/" + hf_dir + "/tmp.wav", ap[1][:ap[0]*8], ap[0])
self.audio_path = args.out_path + "custom/" + hf_dir + "/tmp.wav"
audio, ssr = librosa.load(self.audio_path)
ap = (ssr, audio)
self.args = args
self.rank = 0 # dist.get_rank()
#self.checkpoint_path = args.out_path + "custom/" + args.name + args.notes + "/" #wandb.run.dir #args.cache_path+args.out_path+"/"+args.name
self.checkpoint_path = args.out_path + "custom/" + hf_dir + "/"
if self.rank == 0:
self.test_data = __import__(f"dataloaders.{args.dataset}", fromlist=["something"]).CustomDataset(args, "test", smplx_path=sp, audio_path=ap, text_path=tp)
self.test_loader = torch.utils.data.DataLoader(
self.test_data,
batch_size=1,
shuffle=False,
num_workers=args.loader_workers,
drop_last=False,
)
logger.info(f"Init test dataloader success")
model_module = __import__(f"models.{args.model}", fromlist=["something"])
if args.ddp:
self.model = getattr(model_module, args.g_name)(args).to(self.rank)
process_group = torch.distributed.new_group()
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model, process_group)
self.model = DDP(self.model, device_ids=[self.rank], output_device=self.rank,
broadcast_buffers=False, find_unused_parameters=False)
else:
self.model = torch.nn.DataParallel(getattr(model_module, args.g_name)(args), args.gpus).cpu()
if self.rank == 0:
logger.info(self.model)
logger.info(f"init {args.g_name} success")
self.smplx = smplx.create(
self.args.data_path_1+"smplx_models/",
model_type='smplx',
gender='NEUTRAL_2020',
use_face_contour=False,
num_betas=300,
num_expression_coeffs=100,
ext='npz',
use_pca=False,
)
self.args = args
self.joints = self.test_data.joints
self.ori_joint_list = joints_list[self.args.ori_joints]
self.tar_joint_list_face = joints_list["beat_smplx_face"]
self.tar_joint_list_upper = joints_list["beat_smplx_upper"]
self.tar_joint_list_hands = joints_list["beat_smplx_hands"]
self.tar_joint_list_lower = joints_list["beat_smplx_lower"]
self.joint_mask_face = np.zeros(len(list(self.ori_joint_list.keys()))*3)
self.joints = 55
for joint_name in self.tar_joint_list_face:
self.joint_mask_face[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
self.joint_mask_upper = np.zeros(len(list(self.ori_joint_list.keys()))*3)
for joint_name in self.tar_joint_list_upper:
self.joint_mask_upper[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
self.joint_mask_hands = np.zeros(len(list(self.ori_joint_list.keys()))*3)
for joint_name in self.tar_joint_list_hands:
self.joint_mask_hands[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
self.joint_mask_lower = np.zeros(len(list(self.ori_joint_list.keys()))*3)
for joint_name in self.tar_joint_list_lower:
self.joint_mask_lower[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
self.tracker = other_tools_hf.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'exp', 'lvd', 'mse', "cls", "rec_face", "latent", "cls_full", "cls_self", "cls_word", "latent_word","latent_self"], [False,True,True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False,False,False,False])
vq_model_module = __import__(f"models.motion_representation", fromlist=["something"])
self.args.vae_layer = 2
self.args.vae_length = 256
self.args.vae_test_dim = 106
self.vq_model_face = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu()
# print(self.vq_model_face)
# other_tools_hf.load_checkpoints(self.vq_model_face, self.args.data_path_1 + "pretrained_vq/last_790_face_v2.bin", args.e_name)
self.args.vae_test_dim = 78
self.vq_model_upper = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu()
# other_tools_hf.load_checkpoints(self.vq_model_upper, self.args.data_path_1 + "pretrained_vq/upper_vertex_1layer_710.bin", args.e_name)
self.args.vae_test_dim = 180
self.vq_model_hands = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu()
# other_tools_hf.load_checkpoints(self.vq_model_hands, self.args.data_path_1 + "pretrained_vq/hands_vertex_1layer_710.bin", args.e_name)
self.args.vae_test_dim = 61
self.args.vae_layer = 4
self.vq_model_lower = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu()
# other_tools_hf.load_checkpoints(self.vq_model_lower, self.args.data_path_1 + "pretrained_vq/lower_foot_600.bin", args.e_name)
self.args.vae_test_dim = 61
self.args.vae_layer = 4
self.global_motion = getattr(vq_model_module, "VAEConvZero")(self.args).cpu()
# other_tools_hf.load_checkpoints(self.global_motion, self.args.data_path_1 + "pretrained_vq/last_1700_foot.bin", args.e_name)
self.args.vae_test_dim = 330
self.args.vae_layer = 4
self.args.vae_length = 240
# self.cls_loss = nn.NLLLoss().to(self.rank)
# self.reclatent_loss = nn.MSELoss().to(self.rank)
# self.vel_loss = torch.nn.L1Loss(reduction='mean').to(self.rank)
# self.rec_loss = get_loss_func("GeodesicLoss").to(self.rank)
self.log_softmax = nn.LogSoftmax(dim=2)
def inverse_selection(self, filtered_t, selection_array, n):
original_shape_t = np.zeros((n, selection_array.size))
selected_indices = np.where(selection_array == 1)[0]
for i in range(n):
original_shape_t[i, selected_indices] = filtered_t[i]
return original_shape_t
def inverse_selection_tensor(self, filtered_t, selection_array, n):
selection_array = torch.from_numpy(selection_array).cuda()
original_shape_t = torch.zeros((n, 165)).cuda()
selected_indices = torch.where(selection_array == 1)[0]
for i in range(n):
original_shape_t[i, selected_indices] = filtered_t[i]
return original_shape_t
def test_demo(self, epoch):
'''
input audio and text, output motion
do not calculate loss and metric
save video
'''
results_save_path = self.checkpoint_path + f"/{epoch}/"
if os.path.exists(results_save_path):
import shutil
shutil.rmtree(results_save_path)
os.makedirs(results_save_path)
start_time = time.time()
total_length = 0
test_seq_list = self.test_data.selected_file
align = 0
latent_out = []
latent_ori = []
l2_all = 0
lvel = 0
for its, batch_data in enumerate(self.test_loader):
tar_pose, rec_pose, tar_exps, tar_beta, rec_trans, tar_trans, rec_exps, bs, n, j = test_demo_gpu(
self.model, self.vq_model_face, self.vq_model_upper, self.vq_model_hands, self.vq_model_lower, self.global_motion, self.smplx,
batch_data,
self.args,
self.joints, self.joint_mask_upper, self.joint_mask_lower, self.joint_mask_hands,
self.log_softmax,
)
tar_pose_np = tar_pose.detach().cpu().numpy()
rec_pose_np = rec_pose.detach().cpu().numpy()
rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3)
rec_exp_np = rec_exps.detach().cpu().numpy().reshape(bs*n, 100)
tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100)
tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3)
#'''
# its = 0
gt_npz = np.load(self.args.data_path+self.args.pose_rep +"/"+test_seq_list.iloc[its]['id']+".npz", allow_pickle=True)
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
betas=gt_npz["betas"],
poses=tar_pose_np,
expressions=tar_exp_np,
trans=tar_trans_np,
model='smplx2020',
gender='neutral',
mocap_frame_rate = 30,
)
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
betas=gt_npz["betas"],
poses=rec_pose_np,
expressions=rec_exp_np,
trans=rec_trans_np,
model='smplx2020',
gender='neutral',
mocap_frame_rate = 30,
)
total_length += n
render_vid_path = other_tools_hf.render_one_sequence_no_gt(
results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz',
# results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz',
results_save_path,
self.audio_path,
self.args.data_path_1+"smplx_models/",
use_matplotlib = False,
args = self.args,
)
result = gr.Video(value=render_vid_path, visible=True)
end_time = time.time() - start_time
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion")
return result
@logger.catch
def emage(audio_path):
smplx_path = None
text_path = None
rank = 0
world_size = 1
args = config.parse_args()
#os.environ['TRANSFORMERS_CACHE'] = args.data_path_1 + "hub/"
if not sys.warnoptions:
warnings.simplefilter("ignore")
# dist.init_process_group(backend="gloo", rank=rank, world_size=world_size)
#logger_tools.set_args_and_logger(args, rank)
other_tools_hf.set_random_seed(args)
other_tools_hf.print_exp_info(args)
# return one intance of trainer
trainer = BaseTrainer(args, sp = smplx_path, ap = audio_path, tp = text_path)
result = trainer.test_demo(999)
return result
examples = [
["./EMAGE/test_sequences/wave16k/2_scott_0_1_1.wav"],
["./EMAGE/test_sequences/wave16k/2_scott_0_2_2.wav"],
["./EMAGE/test_sequences/wave16k/2_scott_0_3_3.wav"],
]
demo = gr.Interface(
emage, # function
inputs=[
# gr.File(label="Please upload SMPL-X file with npz format here.", file_types=["npz", "NPZ"]),
gr.Audio(),
# gr.File(label="Please upload textgrid format file here.", file_types=["TextGrid", "Textgrid", "textgrid"])
], # input type
outputs=gr.Video(format="mp4", visible=True),
title='\
<div align="center">\
EMAGE: Towards Unified Holistic Co-Speech Gesture Generation via Expressive Masked Audio Gesture Modeling <br/>\
CVPR 2024 <br/>\
</div>',
description='\
<div align="center">\
Haiyang Liu1*, Zihao Zhu2*, Giorgio Becherini3, Yichen Peng4, Mingyang Su5,<br/>\
You Zhou, Xuefei Zhe, Naoya Iwamoto, Bo Zheng, Michael J. Black3 <br/>\
(*Equal Contribution) <br/>\
1The University of Tokyo, 2Keio University, 4Japan Advanced Institute of Science and Technology, <br/>\
3Max Planck Institute for Intelligent Systems, 5Tsinghua University <br/>\
</div>\
',
article="\
Due to the limited resources in this space, we process the first 8s of your uploaded audio. <br/>\
Try to develop this space locally for longer motion generation, e.g., 60s. <br/>\
Relevant links: [Project Page (https://pantomatrix.github.io/EMAGE/)\
",
examples=examples,
)
if __name__ == "__main__":
os.environ["MASTER_ADDR"]='127.0.0.1'
os.environ["MASTER_PORT"]='8675'
#os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
demo.launch(share=True) |