File size: 39,663 Bytes
2d47d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
import os
import pickle
import math
import shutil
import numpy as np
import lmdb as lmdb
import textgrid as tg
import pandas as pd
import torch
import glob
import json
from termcolor import colored
from loguru import logger
from collections import defaultdict
from torch.utils.data import Dataset
import torch.distributed as dist
import pyarrow
import librosa
import smplx
from .build_vocab import Vocab
from .utils.audio_features import Wav2Vec2Model
from .data_tools import joints_list
from .utils import rotation_conversions as rc
from .utils import other_tools
class CustomDataset(Dataset):
def __init__(self, args, loader_type, augmentation=None, kwargs=None, build_cache=True):
self.args = args
self.loader_type = loader_type
self.rank = dist.get_rank()
self.ori_stride = self.args.stride
self.ori_length = self.args.pose_length
self.alignment = [0,0] # for trinity
self.ori_joint_list = joints_list[self.args.ori_joints]
self.tar_joint_list = joints_list[self.args.tar_joints]
if 'smplx' in self.args.pose_rep:
self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3)
self.joints = len(list(self.tar_joint_list.keys()))
for joint_name in self.tar_joint_list:
self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
else:
self.joints = len(list(self.ori_joint_list.keys()))+1
self.joint_mask = np.zeros(self.joints*3)
for joint_name in self.tar_joint_list:
if joint_name == "Hips":
self.joint_mask[3:6] = 1
else:
self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
# select trainable joints
self.smplx = smplx.create(
self.args.data_path_1+"smplx_models/",
model_type='smplx',
gender='NEUTRAL_2020',
use_face_contour=False,
num_betas=300,
num_expression_coeffs=100,
ext='npz',
use_pca=False,
).cuda().eval()
split_rule = pd.read_csv(args.data_path+"test.csv")
self.selected_file = split_rule
self.data_dir = args.data_path
if loader_type == "test":
self.args.multi_length_training = [1.0]
self.max_length = int(args.pose_length * self.args.multi_length_training[-1])
self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr)
if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr:
self.max_audio_pre_len = self.args.test_length*self.args.audio_sr
if args.word_rep is not None:
with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f:
self.lang_model = pickle.load(f)
preloaded_dir = self.args.root_path + self.args.cache_path + loader_type + f"/{args.pose_rep}_cache"
if build_cache and self.rank == 0:
self.build_cache(preloaded_dir)
self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False)
with self.lmdb_env.begin() as txn:
self.n_samples = txn.stat()["entries"]
def build_cache(self, preloaded_dir):
logger.info(f"Audio bit rate: {self.args.audio_fps}")
logger.info("Reading data '{}'...".format(self.data_dir))
logger.info("Creating the dataset cache...")
if self.args.new_cache:
if os.path.exists(preloaded_dir):
shutil.rmtree(preloaded_dir)
if os.path.exists(preloaded_dir):
logger.info("Found the cache {}".format(preloaded_dir))
elif self.loader_type == "test":
self.cache_generation(
preloaded_dir, True,
0, 0,
is_test=True)
else:
self.cache_generation(
preloaded_dir, self.args.disable_filtering,
self.args.clean_first_seconds, self.args.clean_final_seconds,
is_test=False)
def __len__(self):
return self.n_samples
def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds, clean_final_seconds, is_test=False):
self.n_out_samples = 0
# create db for samples
if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir)
if len(self.args.training_speakers) == 1:
dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 50))# 50G
else:
dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 200))# 200G
n_filtered_out = defaultdict(int)
for index, file_name in self.selected_file.iterrows():
f_name = file_name["id"]
ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
pose_file = self.data_dir + self.args.pose_rep + "/" + f_name + ext
pose_each_file = []
trans_each_file = []
shape_each_file = []
audio_each_file = []
facial_each_file = []
word_each_file = []
emo_each_file = []
sem_each_file = []
vid_each_file = []
id_pose = f_name #1_wayne_0_1_1
logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue"))
if "smplx" in self.args.pose_rep:
pose_data = np.load(pose_file, allow_pickle=True)
assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30'
stride = int(30/self.args.pose_fps)
pose_each_file = pose_data["poses"][::stride]
trans_each_file = pose_data["trans"][::stride]
shape_each_file = np.repeat(pose_data["betas"].reshape(1, 300), pose_each_file.shape[0], axis=0)
assert self.args.pose_fps == 30, "should 30"
m_data = np.load(pose_file, allow_pickle=True)
betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
n, c = poses.shape[0], poses.shape[1]
betas = betas.reshape(1, 300)
betas = np.tile(betas, (n, 1))
betas = torch.from_numpy(betas).cuda().float()
poses = torch.from_numpy(poses.reshape(n, c)).cuda().float()
exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float()
trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float()
max_length = 128
s, r = n//max_length, n%max_length
#print(n, s, r)
all_tensor = []
for i in range(s):
with torch.no_grad():
joints = self.smplx(
betas=betas[i*max_length:(i+1)*max_length],
transl=trans[i*max_length:(i+1)*max_length],
expression=exps[i*max_length:(i+1)*max_length],
jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69],
global_orient=poses[i*max_length:(i+1)*max_length,:3],
body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3],
left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3],
right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3],
return_verts=True,
return_joints=True,
leye_pose=poses[i*max_length:(i+1)*max_length, 69:72],
reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
)['joints'][:, (7,8,10,11), :].reshape(max_length, 4, 3).cpu()
all_tensor.append(joints)
if r != 0:
with torch.no_grad():
joints = self.smplx(
betas=betas[s*max_length:s*max_length+r],
transl=trans[s*max_length:s*max_length+r],
expression=exps[s*max_length:s*max_length+r],
jaw_pose=poses[s*max_length:s*max_length+r, 66:69],
global_orient=poses[s*max_length:s*max_length+r,:3],
body_pose=poses[s*max_length:s*max_length+r,3:21*3+3],
left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3],
right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3],
return_verts=True,
return_joints=True,
leye_pose=poses[s*max_length:s*max_length+r, 69:72],
reye_pose=poses[s*max_length:s*max_length+r, 72:75],
)['joints'][:, (7,8,10,11), :].reshape(r, 4, 3).cpu()
all_tensor.append(joints)
joints = torch.cat(all_tensor, axis=0) # all, 4, 3
# print(joints.shape)
feetv = torch.zeros(joints.shape[1], joints.shape[0])
joints = joints.permute(1, 0, 2)
#print(joints.shape, feetv.shape)
feetv[:, :-1] = (joints[:, 1:] - joints[:, :-1]).norm(dim=-1)
#print(feetv.shape)
contacts = (feetv < 0.01).numpy().astype(float)
# print(contacts.shape, contacts)
contacts = contacts.transpose(1, 0)
pose_each_file = pose_each_file * self.joint_mask
pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)]
pose_each_file = np.concatenate([pose_each_file, contacts], axis=1)
# print(pose_each_file.shape)
if self.args.facial_rep is not None:
logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
facial_each_file = pose_data["expressions"][::stride]
if self.args.facial_norm:
facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
else:
assert 120%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
stride = int(120/self.args.pose_fps)
with open(pose_file, "r") as pose_data:
for j, line in enumerate(pose_data.readlines()):
if j < 431: continue
if j%stride != 0:continue
data = np.fromstring(line, dtype=float, sep=" ")
rot_data = rc.euler_angles_to_matrix(torch.from_numpy(np.deg2rad(data)).reshape(-1, self.joints,3), "XYZ")
rot_data = rc.matrix_to_axis_angle(rot_data).reshape(-1, self.joints*3)
rot_data = rot_data.numpy() * self.joint_mask
pose_each_file.append(rot_data)
trans_each_file.append(data[:3])
pose_each_file = np.array(pose_each_file)
trans_each_file = np.array(trans_each_file)
shape_each_file = np.repeat(np.array(-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
if self.args.facial_rep is not None:
logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
facial_file = pose_file.replace(self.args.pose_rep, self.args.facial_rep).replace("bvh", "json")
assert 60%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120'
stride = int(60/self.args.pose_fps)
if not os.path.exists(facial_file):
logger.warning(f"# ---- file not found for Facial {id_pose}, skip all files with the same id ---- #")
self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
continue
with open(facial_file, 'r') as facial_data_file:
facial_data = json.load(facial_data_file)
for j, frame_data in enumerate(facial_data['frames']):
if j%stride != 0:continue
facial_each_file.append(frame_data['weights'])
facial_each_file = np.array(facial_each_file)
if self.args.facial_norm:
facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
if self.args.id_rep is not None:
int_value = 1
vid_each_file = np.repeat(np.array(int_value).reshape(1, 1), pose_each_file.shape[0], axis=0)
if self.args.audio_rep is not None:
logger.info(f"# ---- Building cache for Audio {id_pose} and Pose {id_pose} ---- #")
audio_file = pose_file.replace(self.args.pose_rep, 'wave16k').replace(ext, ".wav")
if not os.path.exists(audio_file):
logger.warning(f"# ---- file not found for Audio {id_pose}, skip all files with the same id ---- #")
self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
continue
audio_each_file, sr = librosa.load(audio_file)
audio_each_file = librosa.resample(audio_each_file, orig_sr=sr, target_sr=self.args.audio_sr)
if self.args.audio_rep == "onset+amplitude":
from numpy.lib import stride_tricks
frame_length = 1024
# hop_length = 512
shape = (audio_each_file.shape[-1] - frame_length + 1, frame_length)
strides = (audio_each_file.strides[-1], audio_each_file.strides[-1])
rolling_view = stride_tricks.as_strided(audio_each_file, shape=shape, strides=strides)
amplitude_envelope = np.max(np.abs(rolling_view), axis=1)
# pad the last frame_length-1 samples
amplitude_envelope = np.pad(amplitude_envelope, (0, frame_length-1), mode='constant', constant_values=amplitude_envelope[-1])
audio_onset_f = librosa.onset.onset_detect(y=audio_each_file, sr=self.args.audio_sr, units='frames')
onset_array = np.zeros(len(audio_each_file), dtype=float)
onset_array[audio_onset_f] = 1.0
# print(amplitude_envelope.shape, audio_each_file.shape, onset_array.shape)
audio_each_file = np.concatenate([amplitude_envelope.reshape(-1, 1), onset_array.reshape(-1, 1)], axis=1)
elif self.args.audio_rep == "mfcc":
audio_each_file = librosa.feature.melspectrogram(y=audio_each_file, sr=self.args.audio_sr, n_mels=128, hop_length=int(self.args.audio_sr/self.args.audio_fps))
audio_each_file = audio_each_file.transpose(1, 0)
# print(audio_each_file.shape, pose_each_file.shape)
if self.args.audio_norm and self.args.audio_rep == "wave16k":
audio_each_file = (audio_each_file - self.mean_audio) / self.std_audio
time_offset = 0
if self.args.word_rep is not None:
logger.info(f"# ---- Building cache for Word {id_pose} and Pose {id_pose} ---- #")
word_file = f"{self.data_dir}{self.args.word_rep}/{id_pose}.TextGrid"
if not os.path.exists(word_file):
logger.warning(f"# ---- file not found for Word {id_pose}, skip all files with the same id ---- #")
self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index)
continue
tgrid = tg.TextGrid.fromFile(word_file)
if self.args.t_pre_encoder == "bert":
from transformers import AutoTokenizer, BertModel
tokenizer = AutoTokenizer.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True)
model = BertModel.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True).eval()
list_word = []
all_hidden = []
max_len = 400
last = 0
word_token_mapping = []
first = True
for i, word in enumerate(tgrid[0]):
last = i
if (i%max_len != 0) or (i==0):
if word.mark == "":
list_word.append(".")
else:
list_word.append(word.mark)
else:
max_counter = max_len
str_word = ' '.join(map(str, list_word))
if first:
global_len = 0
end = -1
offset_word = []
for k, wordvalue in enumerate(list_word):
start = end+1
end = start+len(wordvalue)
offset_word.append((start, end))
#print(offset_word)
token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
#print(token_scan)
for start, end in offset_word:
sub_mapping = []
for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
if int(start) <= int(start_t) and int(end_t) <= int(end):
#print(i+global_len)
sub_mapping.append(i+global_len)
word_token_mapping.append(sub_mapping)
#print(len(word_token_mapping))
global_len = word_token_mapping[-1][-1] + 1
list_word = []
if word.mark == "":
list_word.append(".")
else:
list_word.append(word.mark)
with torch.no_grad():
inputs = tokenizer(str_word, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
all_hidden.append(last_hidden_states)
#list_word = list_word[:10]
if list_word == []:
pass
else:
if first:
global_len = 0
str_word = ' '.join(map(str, list_word))
end = -1
offset_word = []
for k, wordvalue in enumerate(list_word):
start = end+1
end = start+len(wordvalue)
offset_word.append((start, end))
#print(offset_word)
token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping']
#print(token_scan)
for start, end in offset_word:
sub_mapping = []
for i, (start_t, end_t) in enumerate(token_scan[1:-1]):
if int(start) <= int(start_t) and int(end_t) <= int(end):
sub_mapping.append(i+global_len)
#print(sub_mapping)
word_token_mapping.append(sub_mapping)
#print(len(word_token_mapping))
with torch.no_grad():
inputs = tokenizer(str_word, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :]
all_hidden.append(last_hidden_states)
last_hidden_states = np.concatenate(all_hidden, axis=0)
for i in range(pose_each_file.shape[0]):
found_flag = False
current_time = i/self.args.pose_fps + time_offset
j_last = 0
for j, word in enumerate(tgrid[0]):
word_n, word_s, word_e = word.mark, word.minTime, word.maxTime
if word_s<=current_time and current_time<=word_e:
if self.args.word_cache and self.args.t_pre_encoder == 'bert':
mapping_index = word_token_mapping[j]
#print(mapping_index, word_s, word_e)
s_t = np.linspace(word_s, word_e, len(mapping_index)+1)
#print(s_t)
for tt, t_sep in enumerate(s_t[1:]):
if current_time <= t_sep:
#if len(mapping_index) > 1: print(mapping_index[tt])
word_each_file.append(last_hidden_states[mapping_index[tt]])
break
else:
if word_n == " ":
word_each_file.append(self.lang_model.PAD_token)
else:
word_each_file.append(self.lang_model.get_word_index(word_n))
found_flag = True
j_last = j
break
else: continue
if not found_flag:
if self.args.word_cache and self.args.t_pre_encoder == 'bert':
word_each_file.append(last_hidden_states[j_last])
else:
word_each_file.append(self.lang_model.UNK_token)
word_each_file = np.array(word_each_file)
#print(word_each_file.shape)
if self.args.emo_rep is not None:
logger.info(f"# ---- Building cache for Emo {id_pose} and Pose {id_pose} ---- #")
rtype, start = int(id_pose.split('_')[3]), int(id_pose.split('_')[3])
if rtype == 0 or rtype == 2 or rtype == 4 or rtype == 6:
if start >= 1 and start <= 64:
score = 0
elif start >= 65 and start <= 72:
score = 1
elif start >= 73 and start <= 80:
score = 2
elif start >= 81 and start <= 86:
score = 3
elif start >= 87 and start <= 94:
score = 4
elif start >= 95 and start <= 102:
score = 5
elif start >= 103 and start <= 110:
score = 6
elif start >= 111 and start <= 118:
score = 7
else: pass
else:
# you may denote as unknown in the future
score = 0
emo_each_file = np.repeat(np.array(score).reshape(1, 1), pose_each_file.shape[0], axis=0)
#print(emo_each_file)
if self.args.sem_rep is not None:
logger.info(f"# ---- Building cache for Sem {id_pose} and Pose {id_pose} ---- #")
sem_file = f"{self.data_dir}{self.args.sem_rep}/{id_pose}.txt"
sem_all = pd.read_csv(sem_file,
sep='\t',
names=["name", "start_time", "end_time", "duration", "score", "keywords"])
# we adopt motion-level semantic score here.
for i in range(pose_each_file.shape[0]):
found_flag = False
for j, (start, end, score) in enumerate(zip(sem_all['start_time'],sem_all['end_time'], sem_all['score'])):
current_time = i/self.args.pose_fps + time_offset
if start<=current_time and current_time<=end:
sem_each_file.append(score)
found_flag=True
break
else: continue
if not found_flag: sem_each_file.append(0.)
sem_each_file = np.array(sem_each_file)
#print(sem_each_file)
filtered_result = self._sample_from_clip(
dst_lmdb_env,
audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file,
vid_each_file, emo_each_file, sem_each_file,
disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
)
for type in filtered_result.keys():
n_filtered_out[type] += filtered_result[type]
with dst_lmdb_env.begin() as txn:
logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan"))
n_total_filtered = 0
for type, n_filtered in n_filtered_out.items():
logger.info("{}: {}".format(type, n_filtered))
n_total_filtered += n_filtered
logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format(
n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan"))
dst_lmdb_env.sync()
dst_lmdb_env.close()
def _sample_from_clip(
self, dst_lmdb_env, audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file,
vid_each_file, emo_each_file, sem_each_file,
disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
):
"""
for data cleaning, we ignore the data for first and final n s
for test, we return all data
"""
# audio_start = int(self.alignment[0] * self.args.audio_fps)
# pose_start = int(self.alignment[1] * self.args.pose_fps)
#logger.info(f"before: {audio_each_file.shape} {pose_each_file.shape}")
# audio_each_file = audio_each_file[audio_start:]
# pose_each_file = pose_each_file[pose_start:]
# trans_each_file =
#logger.info(f"after alignment: {audio_each_file.shape} {pose_each_file.shape}")
#print(pose_each_file.shape)
round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps # assume 1500 frames / 15 fps = 100 s
#print(round_seconds_skeleton)
if audio_each_file != []:
if self.args.audio_rep != "wave16k":
round_seconds_audio = len(audio_each_file) // self.args.audio_fps # assume 16,000,00 / 16,000 = 100 s
elif self.args.audio_rep == "mfcc":
round_seconds_audio = audio_each_file.shape[0] // self.args.audio_fps
else:
round_seconds_audio = audio_each_file.shape[0] // self.args.audio_sr
if facial_each_file != []:
round_seconds_facial = facial_each_file.shape[0] // self.args.pose_fps
logger.info(f"audio: {round_seconds_audio}s, pose: {round_seconds_skeleton}s, facial: {round_seconds_facial}s")
round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
max_round = max(round_seconds_audio, round_seconds_skeleton, round_seconds_facial)
if round_seconds_skeleton != max_round:
logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
else:
logger.info(f"pose: {round_seconds_skeleton}s, audio: {round_seconds_audio}s")
round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton)
max_round = max(round_seconds_audio, round_seconds_skeleton)
if round_seconds_skeleton != max_round:
logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s")
clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds # assume [10, 90]s
clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps # [160,000,90*160,000]
clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps # [150,90*15]
for ratio in self.args.multi_length_training:
if is_test:# stride = length for test
cut_length = clip_e_f_pose - clip_s_f_pose
self.args.stride = cut_length
self.max_length = cut_length
else:
self.args.stride = int(ratio*self.ori_stride)
cut_length = int(self.ori_length*ratio)
num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1
logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}")
logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}")
if audio_each_file != []:
audio_short_length = math.floor(cut_length / self.args.pose_fps * self.args.audio_fps)
"""
for audio sr = 16000, fps = 15, pose_length = 34,
audio short length = 36266.7 -> 36266
this error is fine.
"""
logger.info(f"audio from frame {clip_s_f_audio} to {clip_e_f_audio}, length {audio_short_length}")
n_filtered_out = defaultdict(int)
sample_pose_list = []
sample_audio_list = []
sample_facial_list = []
sample_shape_list = []
sample_word_list = []
sample_emo_list = []
sample_sem_list = []
sample_vid_list = []
sample_trans_list = []
for i in range(num_subdivision): # cut into around 2s chip, (self npose)
start_idx = clip_s_f_pose + i * self.args.stride
fin_idx = start_idx + cut_length
sample_pose = pose_each_file[start_idx:fin_idx]
sample_trans = trans_each_file[start_idx:fin_idx]
sample_shape = shape_each_file[start_idx:fin_idx]
# print(sample_pose.shape)
if self.args.audio_rep is not None:
audio_start = clip_s_f_audio + math.floor(i * self.args.stride * self.args.audio_fps / self.args.pose_fps)
audio_end = audio_start + audio_short_length
sample_audio = audio_each_file[audio_start:audio_end]
else:
sample_audio = np.array([-1])
sample_facial = facial_each_file[start_idx:fin_idx] if self.args.facial_rep is not None else np.array([-1])
sample_word = word_each_file[start_idx:fin_idx] if self.args.word_rep is not None else np.array([-1])
sample_emo = emo_each_file[start_idx:fin_idx] if self.args.emo_rep is not None else np.array([-1])
sample_sem = sem_each_file[start_idx:fin_idx] if self.args.sem_rep is not None else np.array([-1])
sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1])
if sample_pose.any() != None:
# filtering motion skeleton data
sample_pose, filtering_message = MotionPreprocessor(sample_pose).get()
is_correct_motion = (sample_pose != [])
if is_correct_motion or disable_filtering:
sample_pose_list.append(sample_pose)
sample_audio_list.append(sample_audio)
sample_facial_list.append(sample_facial)
sample_shape_list.append(sample_shape)
sample_word_list.append(sample_word)
sample_vid_list.append(sample_vid)
sample_emo_list.append(sample_emo)
sample_sem_list.append(sample_sem)
sample_trans_list.append(sample_trans)
else:
n_filtered_out[filtering_message] += 1
if len(sample_pose_list) > 0:
with dst_lmdb_env.begin(write=True) as txn:
for pose, audio, facial, shape, word, vid, emo, sem, trans in zip(
sample_pose_list,
sample_audio_list,
sample_facial_list,
sample_shape_list,
sample_word_list,
sample_vid_list,
sample_emo_list,
sample_sem_list,
sample_trans_list,):
k = "{:005}".format(self.n_out_samples).encode("ascii")
v = [pose, audio, facial, shape, word, emo, sem, vid, trans]
v = pyarrow.serialize(v).to_buffer()
txn.put(k, v)
self.n_out_samples += 1
return n_filtered_out
def __getitem__(self, idx):
with self.lmdb_env.begin(write=False) as txn:
key = "{:005}".format(idx).encode("ascii")
sample = txn.get(key)
sample = pyarrow.deserialize(sample)
tar_pose, in_audio, in_facial, in_shape, in_word, emo, sem, vid, trans = sample
#print(in_shape)
#vid = torch.from_numpy(vid).int()
emo = torch.from_numpy(emo).int()
sem = torch.from_numpy(sem).float()
in_audio = torch.from_numpy(in_audio).float()
in_word = torch.from_numpy(in_word).float() if self.args.word_cache else torch.from_numpy(in_word).int()
if self.loader_type == "test":
tar_pose = torch.from_numpy(tar_pose).float()
trans = torch.from_numpy(trans).float()
in_facial = torch.from_numpy(in_facial).float()
vid = torch.from_numpy(vid).float()
in_shape = torch.from_numpy(in_shape).float()
else:
in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float()
trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float()
vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float()
tar_pose = torch.from_numpy(tar_pose).reshape((tar_pose.shape[0], -1)).float()
in_facial = torch.from_numpy(in_facial).reshape((in_facial.shape[0], -1)).float()
return {"pose":tar_pose, "audio":in_audio, "facial":in_facial, "beta": in_shape, "word":in_word, "id":vid, "emo":emo, "sem":sem, "trans":trans}
class MotionPreprocessor:
def __init__(self, skeletons):
self.skeletons = skeletons
#self.mean_pose = mean_pose
self.filtering_message = "PASS"
def get(self):
assert (self.skeletons is not None)
# filtering
if self.skeletons != []:
if self.check_pose_diff():
self.skeletons = []
self.filtering_message = "pose"
# elif self.check_spine_angle():
# self.skeletons = []
# self.filtering_message = "spine angle"
# elif self.check_static_motion():
# self.skeletons = []
# self.filtering_message = "motion"
# if self.skeletons != []:
# self.skeletons = self.skeletons.tolist()
# for i, frame in enumerate(self.skeletons):
# assert not np.isnan(self.skeletons[i]).any() # missing joints
return self.skeletons, self.filtering_message
def check_static_motion(self, verbose=True):
def get_variance(skeleton, joint_idx):
wrist_pos = skeleton[:, joint_idx]
variance = np.sum(np.var(wrist_pos, axis=0))
return variance
left_arm_var = get_variance(self.skeletons, 6)
right_arm_var = get_variance(self.skeletons, 9)
th = 0.0014 # exclude 13110
# th = 0.002 # exclude 16905
if left_arm_var < th and right_arm_var < th:
if verbose:
print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
return True
else:
if verbose:
print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
return False
def check_pose_diff(self, verbose=False):
# diff = np.abs(self.skeletons - self.mean_pose) # 186*1
# diff = np.mean(diff)
# # th = 0.017
# th = 0.02 #0.02 # exclude 3594
# if diff < th:
# if verbose:
# print("skip - check_pose_diff {:.5f}".format(diff))
# return True
# # th = 3.5 #0.02 # exclude 3594
# # if 3.5 < diff < 5:
# # if verbose:
# # print("skip - check_pose_diff {:.5f}".format(diff))
# # return True
# else:
# if verbose:
# print("pass - check_pose_diff {:.5f}".format(diff))
return False
def check_spine_angle(self, verbose=True):
def angle_between(v1, v2):
v1_u = v1 / np.linalg.norm(v1)
v2_u = v2 / np.linalg.norm(v2)
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
angles = []
for i in range(self.skeletons.shape[0]):
spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0]
angle = angle_between(spine_vec, [0, -1, 0])
angles.append(angle)
if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20: # exclude 4495
# if np.rad2deg(max(angles)) > 20: # exclude 8270
if verbose:
print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles)))
return True
else:
if verbose:
print("pass - check_spine_angle {:.5f}".format(max(angles)))
return False |