|
"""modified from https://github.com/yesheng-THU/GFGE/blob/main/data_processing/audio_features.py""" |
|
import numpy as np |
|
import librosa |
|
import math |
|
import os |
|
import scipy.io.wavfile as wav |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import copy |
|
from tqdm import tqdm |
|
from transformers import Wav2Vec2Model, Wav2Vec2Config |
|
from transformers.modeling_outputs import BaseModelOutput |
|
from typing import Optional, Tuple |
|
_CONFIG_FOR_DOC = "Wav2Vec2Config" |
|
|
|
|
|
|
|
def _compute_mask_indices( |
|
shape: Tuple[int, int], |
|
mask_prob: float, |
|
mask_length: int, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
min_masks: int = 0, |
|
) -> np.ndarray: |
|
bsz, all_sz = shape |
|
mask = np.full((bsz, all_sz), False) |
|
|
|
all_num_mask = int( |
|
mask_prob * all_sz / float(mask_length) |
|
+ np.random.rand() |
|
) |
|
all_num_mask = max(min_masks, all_num_mask) |
|
mask_idcs = [] |
|
padding_mask = attention_mask.ne(1) if attention_mask is not None else None |
|
for i in range(bsz): |
|
if padding_mask is not None: |
|
sz = all_sz - padding_mask[i].long().sum().item() |
|
num_mask = int( |
|
mask_prob * sz / float(mask_length) |
|
+ np.random.rand() |
|
) |
|
num_mask = max(min_masks, num_mask) |
|
else: |
|
sz = all_sz |
|
num_mask = all_num_mask |
|
|
|
lengths = np.full(num_mask, mask_length) |
|
|
|
if sum(lengths) == 0: |
|
lengths[0] = min(mask_length, sz - 1) |
|
|
|
min_len = min(lengths) |
|
if sz - min_len <= num_mask: |
|
min_len = sz - num_mask - 1 |
|
|
|
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) |
|
mask_idc = np.asarray([mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j])]) |
|
mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) |
|
|
|
min_len = min([len(m) for m in mask_idcs]) |
|
for i, mask_idc in enumerate(mask_idcs): |
|
if len(mask_idc) > min_len: |
|
mask_idc = np.random.choice(mask_idc, min_len, replace=False) |
|
mask[i, mask_idc] = True |
|
return mask |
|
|
|
|
|
def linear_interpolation(features, input_fps, output_fps, output_len=None): |
|
features = features.transpose(1, 2) |
|
seq_len = features.shape[2] / float(input_fps) |
|
if output_len is None: |
|
output_len = int(seq_len * output_fps) |
|
output_features = F.interpolate(features,size=output_len,align_corners=True,mode='linear') |
|
return output_features.transpose(1, 2) |
|
|
|
class Wav2Vec2Model(Wav2Vec2Model): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.audio_fps = 15 |
|
|
|
def forward( |
|
self, |
|
input_values, |
|
dataset="beat", |
|
attention_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
frame_num=None |
|
): |
|
|
|
self.config.output_attentions = True |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
hidden_states = self.feature_extractor(input_values) |
|
hidden_states = hidden_states.transpose(1, 2) |
|
|
|
if dataset == "beat": |
|
hidden_states = linear_interpolation(hidden_states, 49, self.audio_fps, output_len=frame_num) |
|
|
|
if attention_mask is not None: |
|
output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)) |
|
attention_mask = torch.zeros( |
|
hidden_states.shape[:2], dtype=hidden_states.dtype, device=hidden_states.device |
|
) |
|
attention_mask[ |
|
(torch.arange(attention_mask.shape[0], device=hidden_states.device), output_lengths - 1) |
|
] = 1 |
|
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() |
|
|
|
hidden_states = self.feature_projection(hidden_states)[0] |
|
|
|
if self.config.apply_spec_augment and self.training: |
|
batch_size, sequence_length, hidden_size = hidden_states.size() |
|
if self.config.mask_time_prob > 0: |
|
mask_time_indices = _compute_mask_indices( |
|
(batch_size, sequence_length), |
|
self.config.mask_time_prob, |
|
self.config.mask_time_length, |
|
attention_mask=attention_mask, |
|
min_masks=2, |
|
) |
|
hidden_states[torch.from_numpy(mask_time_indices)] = self.masked_spec_embed.to(hidden_states.dtype) |
|
if self.config.mask_feature_prob > 0: |
|
mask_feature_indices = _compute_mask_indices( |
|
(batch_size, hidden_size), |
|
self.config.mask_feature_prob, |
|
self.config.mask_feature_length, |
|
) |
|
mask_feature_indices = torch.from_numpy(mask_feature_indices).to(hidden_states.device) |
|
hidden_states[mask_feature_indices[:, None].expand(-1, sequence_length, -1)] = 0 |
|
encoder_outputs = self.encoder( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = encoder_outputs[0] |
|
|
|
if not return_dict: |
|
return (hidden_states,) + encoder_outputs[1:] |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
def extract_wav2vec2(file_folder, destpath, fps, inference_length=16000*20): |
|
wav2vec_model = Wav2Vec2Model.from_pretrained("/home/ma-user/work/datasets/hub/transformer/wav2vec2-base-960h") |
|
wav2vec_model.feature_extractor._freeze_parameters() |
|
wav2vec_model = wav2vec_model.cuda() |
|
wav2vec_model.eval() |
|
audio_mean = np.load("/home/ma-user/work/datasets/beat_cache/beat_english_15_141/train/wave16k/npy_mean.npy") |
|
audio_std = np.load("/home/ma-user/work/datasets/beat_cache/beat_english_15_141/train/wave16k/npy_std.npy") |
|
if not os.path.exists(destpath): os.mkdir(destpath) |
|
with torch.no_grad(): |
|
for file_name in tqdm(os.listdir(file_folder)): |
|
if "mean" in file_name or "std" in file_name or "pynb" in file_name: continue |
|
audio_np = np.load(file_folder+file_name) |
|
audio_np = (audio_np-audio_mean)/audio_std |
|
audio_torch = torch.from_numpy(audio_np).cuda() |
|
audio_torch = audio_torch.reshape(1, -1) |
|
|
|
|
|
if audio_torch.shape[1] > inference_length: |
|
num_div = audio_torch.shape[1] // inference_length |
|
remain = audio_torch.shape[1] % inference_length |
|
for i in range(num_div): |
|
audio_feat = wav2vec_model(audio_torch[:, i*inference_length:(i+1)*inference_length]).last_hidden_state.cpu().numpy().reshape(-1, 768) |
|
if i == 0: |
|
audio_feat_all = audio_feat |
|
else: |
|
audio_feat_all = np.concatenate((audio_feat_all, audio_feat), 0) |
|
if remain > 1600: |
|
audio_feat = wav2vec_model(audio_torch[:, num_div*inference_length:num_div*inference_length+remain]).last_hidden_state.cpu().numpy().reshape(-1, 768) |
|
audio_feat_all = np.concatenate((audio_feat_all, audio_feat), 0) |
|
else: |
|
audio_feat_all = wav2vec_model(audio_torch).last_hidden_state.cpu().numpy().reshape(-1, 768) |
|
|
|
np.save(destpath+file_name, audio_feat_all) |
|
|
|
def extract_melspec(file, destpath, fps, n_mels=128): |
|
fs,X = wav.read(file) |
|
X = X.astype(float)/math.pow(2,15) |
|
target_sr = 48000 |
|
X_48k = librosa.resample(X, orig_sr=fs, target_sr=target_sr, res_type="kaiser_best") |
|
n_fft=int(target_sr*0.13) |
|
hop_len=int(target_sr/fps) |
|
C = librosa.feature.melspectrogram(y=X_48k, sr=target_sr, n_fft=n_fft, hop_length=hop_len, n_mels=n_mels, fmin=0.0, fmax=8000) |
|
|
|
|
|
C = np.log(C) |
|
np.save(destpath,np.transpose(C)) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
target_fps = 15 |
|
ori_data_path = f"/home/ma-user/work/datasets/beat_cache/beat_english_{target_fps}_141/" |
|
for data_type in ["train", "val", "test"]: |
|
extract_wav2vec2(ori_data_path+data_type+"/wave16k/", ori_data_path+data_type+f"/wav2vec2_{target_fps}/", target_fps) |