|
import random |
|
import math |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import smplx |
|
|
|
|
|
""" |
|
from tm2t |
|
TM2T: Stochastical and Tokenized Modeling for the Reciprocal Generation of 3D Human Motions and Texts |
|
https://github.com/EricGuo5513/TM2T |
|
""" |
|
from .quantizer import * |
|
from .utils.layer import ResBlock, init_weight |
|
|
|
class SCFormer(nn.Module): |
|
def __init__(self, args): |
|
super(VQEncoderV3, self).__init__() |
|
|
|
|
|
n_down = args.vae_layer |
|
channels = [args.vae_length] |
|
for i in range(n_down-1): |
|
channels.append(args.vae_length) |
|
|
|
input_size = args.vae_test_dim |
|
assert len(channels) == n_down |
|
layers = [ |
|
nn.Conv1d(input_size, channels[0], 4, 2, 1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
ResBlock(channels[0]), |
|
] |
|
|
|
for i in range(1, n_down): |
|
layers += [ |
|
nn.Conv1d(channels[i-1], channels[i], 4, 2, 1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
ResBlock(channels[i]), |
|
] |
|
self.main = nn.Sequential(*layers) |
|
|
|
self.main.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
''' |
|
face 51 or 106 |
|
hand 30*(15) |
|
upper body |
|
lower body |
|
global 1*3 |
|
max length around 180 --> 450 |
|
''' |
|
bs, t, n = inputs.shape |
|
inputs = inputs.reshape(bs*t, n) |
|
inputs = self.spatial_transformer_encoder(inputs) |
|
cs = inputs.shape[1] |
|
inputs = inputs.reshape(bs, t, cs).permute(0, 2, 1).reshape(bs*cs, t) |
|
inputs = self.temporal_cnn_encoder(inputs) |
|
ct = inputs.shape[1] |
|
outputs = inputs.reshape(bs, cs, ct).permute(0, 2, 1) |
|
return outputs |
|
|
|
class VQEncoderV3(nn.Module): |
|
def __init__(self, args): |
|
super(VQEncoderV3, self).__init__() |
|
n_down = args.vae_layer |
|
channels = [args.vae_length] |
|
for i in range(n_down-1): |
|
channels.append(args.vae_length) |
|
|
|
input_size = args.vae_test_dim |
|
assert len(channels) == n_down |
|
layers = [ |
|
nn.Conv1d(input_size, channels[0], 4, 2, 1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
ResBlock(channels[0]), |
|
] |
|
|
|
for i in range(1, n_down): |
|
layers += [ |
|
nn.Conv1d(channels[i-1], channels[i], 4, 2, 1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
ResBlock(channels[i]), |
|
] |
|
self.main = nn.Sequential(*layers) |
|
|
|
self.main.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
return outputs |
|
|
|
class VQEncoderV6(nn.Module): |
|
def __init__(self, args): |
|
super(VQEncoderV6, self).__init__() |
|
n_down = args.vae_layer |
|
channels = [args.vae_length] |
|
for i in range(n_down-1): |
|
channels.append(args.vae_length) |
|
|
|
input_size = args.vae_test_dim |
|
assert len(channels) == n_down |
|
layers = [ |
|
nn.Conv1d(input_size, channels[0], 3, 1, 1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
ResBlock(channels[0]), |
|
] |
|
|
|
for i in range(1, n_down): |
|
layers += [ |
|
nn.Conv1d(channels[i-1], channels[i], 3, 1, 1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
ResBlock(channels[i]), |
|
] |
|
self.main = nn.Sequential(*layers) |
|
|
|
self.main.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
return outputs |
|
|
|
class VQEncoderV4(nn.Module): |
|
def __init__(self, args): |
|
super(VQEncoderV4, self).__init__() |
|
n_down = args.vae_layer |
|
channels = [args.vae_length] |
|
for i in range(n_down-1): |
|
channels.append(args.vae_length) |
|
|
|
input_size = args.vae_test_dim |
|
assert len(channels) == n_down |
|
layers = [ |
|
nn.Conv1d(input_size, channels[0], 4, 2, 1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
ResBlock(channels[0]), |
|
] |
|
|
|
for i in range(1, n_down): |
|
layers += [ |
|
nn.Conv1d(channels[i-1], channels[i], 3, 1, 1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
ResBlock(channels[i]), |
|
] |
|
self.main = nn.Sequential(*layers) |
|
|
|
self.main.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
|
|
return outputs |
|
|
|
class VQEncoderV5(nn.Module): |
|
def __init__(self, args): |
|
super(VQEncoderV5, self).__init__() |
|
n_down = args.vae_layer |
|
channels = [args.vae_length] |
|
for i in range(n_down-1): |
|
channels.append(args.vae_length) |
|
|
|
input_size = args.vae_test_dim |
|
assert len(channels) == n_down |
|
layers = [ |
|
nn.Conv1d(input_size, channels[0], 3, 1, 1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
ResBlock(channels[0]), |
|
] |
|
|
|
for i in range(1, n_down): |
|
layers += [ |
|
nn.Conv1d(channels[i-1], channels[i], 3, 1, 1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
ResBlock(channels[i]), |
|
] |
|
self.main = nn.Sequential(*layers) |
|
|
|
self.main.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
|
|
return outputs |
|
|
|
class VQDecoderV4(nn.Module): |
|
def __init__(self, args): |
|
super(VQDecoderV4, self).__init__() |
|
n_up = args.vae_layer |
|
channels = [] |
|
for i in range(n_up-1): |
|
channels.append(args.vae_length) |
|
channels.append(args.vae_length) |
|
channels.append(args.vae_test_dim) |
|
input_size = args.vae_length |
|
n_resblk = 2 |
|
assert len(channels) == n_up + 1 |
|
if input_size == channels[0]: |
|
layers = [] |
|
else: |
|
layers = [nn.Conv1d(input_size, channels[0], kernel_size=3, stride=1, padding=1)] |
|
|
|
for i in range(n_resblk): |
|
layers += [ResBlock(channels[0])] |
|
|
|
for i in range(n_up): |
|
up_factor = 2 if i < n_up - 1 else 1 |
|
layers += [ |
|
nn.Upsample(scale_factor=up_factor, mode='nearest'), |
|
nn.Conv1d(channels[i], channels[i+1], kernel_size=3, stride=1, padding=1), |
|
nn.LeakyReLU(0.2, inplace=True) |
|
] |
|
layers += [nn.Conv1d(channels[-1], channels[-1], kernel_size=3, stride=1, padding=1)] |
|
self.main = nn.Sequential(*layers) |
|
self.main.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
return outputs |
|
|
|
class VQDecoderV5(nn.Module): |
|
def __init__(self, args): |
|
super(VQDecoderV5, self).__init__() |
|
n_up = args.vae_layer |
|
channels = [] |
|
for i in range(n_up-1): |
|
channels.append(args.vae_length) |
|
channels.append(args.vae_length) |
|
channels.append(args.vae_test_dim) |
|
input_size = args.vae_length |
|
n_resblk = 2 |
|
assert len(channels) == n_up + 1 |
|
if input_size == channels[0]: |
|
layers = [] |
|
else: |
|
layers = [nn.Conv1d(input_size, channels[0], kernel_size=3, stride=1, padding=1)] |
|
|
|
for i in range(n_resblk): |
|
layers += [ResBlock(channels[0])] |
|
|
|
for i in range(n_up): |
|
up_factor = 2 if i < n_up - 1 else 1 |
|
layers += [ |
|
|
|
nn.Conv1d(channels[i], channels[i+1], kernel_size=3, stride=1, padding=1), |
|
nn.LeakyReLU(0.2, inplace=True) |
|
] |
|
layers += [nn.Conv1d(channels[-1], channels[-1], kernel_size=3, stride=1, padding=1)] |
|
self.main = nn.Sequential(*layers) |
|
self.main.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
return outputs |
|
|
|
class VQDecoderV7(nn.Module): |
|
def __init__(self, args): |
|
super(VQDecoderV7, self).__init__() |
|
n_up = args.vae_layer |
|
channels = [] |
|
for i in range(n_up-1): |
|
channels.append(args.vae_length) |
|
channels.append(args.vae_length) |
|
channels.append(args.vae_test_dim+4) |
|
input_size = args.vae_length |
|
n_resblk = 2 |
|
assert len(channels) == n_up + 1 |
|
if input_size == channels[0]: |
|
layers = [] |
|
else: |
|
layers = [nn.Conv1d(input_size, channels[0], kernel_size=3, stride=1, padding=1)] |
|
|
|
for i in range(n_resblk): |
|
layers += [ResBlock(channels[0])] |
|
|
|
for i in range(n_up): |
|
up_factor = 2 if i < n_up - 1 else 1 |
|
layers += [ |
|
|
|
nn.Conv1d(channels[i], channels[i+1], kernel_size=3, stride=1, padding=1), |
|
nn.LeakyReLU(0.2, inplace=True) |
|
] |
|
layers += [nn.Conv1d(channels[-1], channels[-1], kernel_size=3, stride=1, padding=1)] |
|
self.main = nn.Sequential(*layers) |
|
self.main.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
return outputs |
|
|
|
class VQDecoderV3(nn.Module): |
|
def __init__(self, args): |
|
super(VQDecoderV3, self).__init__() |
|
n_up = args.vae_layer |
|
channels = [] |
|
for i in range(n_up-1): |
|
channels.append(args.vae_length) |
|
channels.append(args.vae_length) |
|
channels.append(args.vae_test_dim) |
|
input_size = args.vae_length |
|
n_resblk = 2 |
|
assert len(channels) == n_up + 1 |
|
if input_size == channels[0]: |
|
layers = [] |
|
else: |
|
layers = [nn.Conv1d(input_size, channels[0], kernel_size=3, stride=1, padding=1)] |
|
|
|
for i in range(n_resblk): |
|
layers += [ResBlock(channels[0])] |
|
|
|
for i in range(n_up): |
|
layers += [ |
|
nn.Upsample(scale_factor=2, mode='nearest'), |
|
nn.Conv1d(channels[i], channels[i+1], kernel_size=3, stride=1, padding=1), |
|
nn.LeakyReLU(0.2, inplace=True) |
|
] |
|
layers += [nn.Conv1d(channels[-1], channels[-1], kernel_size=3, stride=1, padding=1)] |
|
self.main = nn.Sequential(*layers) |
|
self.main.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
return outputs |
|
|
|
class VQDecoderV6(nn.Module): |
|
def __init__(self, args): |
|
super(VQDecoderV6, self).__init__() |
|
n_up = args.vae_layer |
|
channels = [] |
|
for i in range(n_up-1): |
|
channels.append(args.vae_length) |
|
channels.append(args.vae_length) |
|
channels.append(args.vae_test_dim) |
|
input_size = args.vae_length * 2 |
|
n_resblk = 2 |
|
assert len(channels) == n_up + 1 |
|
if input_size == channels[0]: |
|
layers = [] |
|
else: |
|
layers = [nn.Conv1d(input_size, channels[0], kernel_size=3, stride=1, padding=1)] |
|
|
|
for i in range(n_resblk): |
|
layers += [ResBlock(channels[0])] |
|
|
|
for i in range(n_up): |
|
layers += [ |
|
|
|
nn.Conv1d(channels[i], channels[i+1], kernel_size=3, stride=1, padding=1), |
|
nn.LeakyReLU(0.2, inplace=True) |
|
] |
|
layers += [nn.Conv1d(channels[-1], channels[-1], kernel_size=3, stride=1, padding=1)] |
|
self.main = nn.Sequential(*layers) |
|
self.main.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
return outputs |
|
|
|
|
|
|
|
from .utils.layer import reparameterize, ConvNormRelu, BasicBlock |
|
""" |
|
from Trimodal, |
|
encoder: |
|
bs, n, c_in --conv--> bs, n/k, c_out_0 --mlp--> bs, c_out_1, only support fixed length |
|
decoder: |
|
bs, c_out_1 --mlp--> bs, n/k*c_out_0 --> bs, n/k, c_out_0 --deconv--> bs, n, c_in |
|
""" |
|
class PoseEncoderConv(nn.Module): |
|
def __init__(self, length, dim, feature_length=32): |
|
super().__init__() |
|
self.base = feature_length |
|
self.net = nn.Sequential( |
|
ConvNormRelu(dim, self.base, batchnorm=True), |
|
ConvNormRelu(self.base, self.base*2, batchnorm=True), |
|
ConvNormRelu(self.base*2, self.base*2, True, batchnorm=True), |
|
nn.Conv1d(self.base*2, self.base, 3) |
|
) |
|
self.out_net = nn.Sequential( |
|
nn.Linear(12*self.base, self.base*4), |
|
nn.BatchNorm1d(self.base*4), |
|
nn.LeakyReLU(True), |
|
nn.Linear(self.base*4, self.base*2), |
|
nn.BatchNorm1d(self.base*2), |
|
nn.LeakyReLU(True), |
|
nn.Linear(self.base*2, self.base), |
|
) |
|
self.fc_mu = nn.Linear(self.base, self.base) |
|
self.fc_logvar = nn.Linear(self.base, self.base) |
|
|
|
def forward(self, poses, variational_encoding=None): |
|
poses = poses.transpose(1, 2) |
|
out = self.net(poses) |
|
out = out.flatten(1) |
|
out = self.out_net(out) |
|
mu = self.fc_mu(out) |
|
logvar = self.fc_logvar(out) |
|
if variational_encoding: |
|
z = reparameterize(mu, logvar) |
|
else: |
|
z = mu |
|
return z, mu, logvar |
|
|
|
|
|
class PoseDecoderFC(nn.Module): |
|
def __init__(self, gen_length, pose_dim, use_pre_poses=False): |
|
super().__init__() |
|
self.gen_length = gen_length |
|
self.pose_dim = pose_dim |
|
self.use_pre_poses = use_pre_poses |
|
|
|
in_size = 32 |
|
if use_pre_poses: |
|
self.pre_pose_net = nn.Sequential( |
|
nn.Linear(pose_dim * 4, 32), |
|
nn.BatchNorm1d(32), |
|
nn.ReLU(), |
|
nn.Linear(32, 32), |
|
) |
|
in_size += 32 |
|
|
|
self.net = nn.Sequential( |
|
nn.Linear(in_size, 128), |
|
nn.BatchNorm1d(128), |
|
nn.ReLU(), |
|
nn.Linear(128, 128), |
|
nn.BatchNorm1d(128), |
|
nn.ReLU(), |
|
nn.Linear(128, 256), |
|
nn.BatchNorm1d(256), |
|
nn.ReLU(), |
|
nn.Linear(256, 512), |
|
nn.BatchNorm1d(512), |
|
nn.ReLU(), |
|
nn.Linear(512, gen_length * pose_dim), |
|
) |
|
|
|
def forward(self, latent_code, pre_poses=None): |
|
if self.use_pre_poses: |
|
pre_pose_feat = self.pre_pose_net(pre_poses.reshape(pre_poses.shape[0], -1)) |
|
feat = torch.cat((pre_pose_feat, latent_code), dim=1) |
|
else: |
|
feat = latent_code |
|
output = self.net(feat) |
|
output = output.view(-1, self.gen_length, self.pose_dim) |
|
return output |
|
|
|
|
|
class PoseDecoderConv(nn.Module): |
|
def __init__(self, length, dim, use_pre_poses=False, feature_length=32): |
|
super().__init__() |
|
self.use_pre_poses = use_pre_poses |
|
self.feat_size = feature_length |
|
|
|
if use_pre_poses: |
|
self.pre_pose_net = nn.Sequential( |
|
nn.Linear(dim * 4, 32), |
|
nn.BatchNorm1d(32), |
|
nn.ReLU(), |
|
nn.Linear(32, 32), |
|
) |
|
self.feat_size += 32 |
|
|
|
if length == 64: |
|
self.pre_net = nn.Sequential( |
|
nn.Linear(self.feat_size, self.feat_size), |
|
nn.BatchNorm1d(self.feat_size), |
|
nn.LeakyReLU(True), |
|
nn.Linear(self.feat_size, self.feat_size//8*64), |
|
) |
|
elif length == 34: |
|
self.pre_net = nn.Sequential( |
|
nn.Linear(self.feat_size, self.feat_size*2), |
|
nn.BatchNorm1d(self.feat_size*2), |
|
nn.LeakyReLU(True), |
|
nn.Linear(self.feat_size*2, self.feat_size//8*34), |
|
) |
|
elif length == 32: |
|
self.pre_net = nn.Sequential( |
|
nn.Linear(self.feat_size, self.feat_size*2), |
|
nn.BatchNorm1d(self.feat_size*2), |
|
nn.LeakyReLU(True), |
|
nn.Linear(self.feat_size*2, self.feat_size//8*32), |
|
) |
|
else: |
|
assert False |
|
self.decoder_size = self.feat_size//8 |
|
self.net = nn.Sequential( |
|
nn.ConvTranspose1d(self.decoder_size, self.feat_size, 3), |
|
nn.BatchNorm1d(self.feat_size), |
|
nn.LeakyReLU(0.2, True), |
|
|
|
nn.ConvTranspose1d(self.feat_size, self.feat_size, 3), |
|
nn.BatchNorm1d(self.feat_size), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv1d(self.feat_size, self.feat_size*2, 3), |
|
nn.Conv1d(self.feat_size*2, dim, 3), |
|
) |
|
|
|
def forward(self, feat, pre_poses=None): |
|
if self.use_pre_poses: |
|
pre_pose_feat = self.pre_pose_net(pre_poses.reshape(pre_poses.shape[0], -1)) |
|
feat = torch.cat((pre_pose_feat, feat), dim=1) |
|
|
|
out = self.pre_net(feat) |
|
|
|
out = out.view(feat.shape[0], self.decoder_size, -1) |
|
|
|
out = self.net(out) |
|
out = out.transpose(1, 2) |
|
return out |
|
|
|
''' |
|
Our CaMN Modification |
|
''' |
|
class PoseEncoderConvResNet(nn.Module): |
|
def __init__(self, length, dim, feature_length=32): |
|
super().__init__() |
|
self.base = feature_length |
|
self.conv1=BasicBlock(dim, self.base, reduce_first = 1, downsample = False, first_dilation=1) |
|
self.conv2=BasicBlock(self.base, self.base*2, downsample = False, first_dilation=1,) |
|
self.conv3=BasicBlock(self.base*2, self.base*2, first_dilation=1, downsample = True, stride=2) |
|
self.conv4=BasicBlock(self.base*2, self.base, first_dilation=1, downsample = False) |
|
|
|
self.out_net = nn.Sequential( |
|
|
|
nn.Linear(17*self.base, self.base*4), |
|
nn.BatchNorm1d(self.base*4), |
|
nn.LeakyReLU(True), |
|
nn.Linear(self.base*4, self.base*2), |
|
nn.BatchNorm1d(self.base*2), |
|
nn.LeakyReLU(True), |
|
nn.Linear(self.base*2, self.base), |
|
) |
|
|
|
self.fc_mu = nn.Linear(self.base, self.base) |
|
self.fc_logvar = nn.Linear(self.base, self.base) |
|
|
|
def forward(self, poses, variational_encoding=None): |
|
poses = poses.transpose(1, 2) |
|
out1 = self.conv1(poses) |
|
out2 = self.conv2(out1) |
|
out3 = self.conv3(out2) |
|
out = self.conv4(out3) |
|
out = out.flatten(1) |
|
out = self.out_net(out) |
|
mu = self.fc_mu(out) |
|
logvar = self.fc_logvar(out) |
|
if variational_encoding: |
|
z = reparameterize(mu, logvar) |
|
else: |
|
z = mu |
|
return z, mu, logvar |
|
|
|
|
|
|
|
''' |
|
bs, n, c_int --> bs, n, c_out or bs, 1 (hidden), c_out |
|
''' |
|
class AELSTM(nn.Module): |
|
def __init__(self, args): |
|
super().__init__() |
|
self.motion_emb = nn.Linear(args.vae_test_dim, args.vae_length) |
|
self.lstm = nn.LSTM(args.vae_length, hidden_size=args.vae_length, num_layers=4, batch_first=True, |
|
bidirectional=True, dropout=0.3) |
|
self.out = nn.Sequential( |
|
nn.Linear(args.vae_length, args.vae_length//2), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Linear(args.vae_length//2, args.vae_test_dim) |
|
) |
|
self.hidden_size = args.vae_length |
|
|
|
def forward(self, inputs): |
|
poses = self.motion_emb(inputs) |
|
out, _ = self.lstm(poses) |
|
out = out[:, :, :self.hidden_size] + out[:, :, self.hidden_size:] |
|
out_poses = self.out(out) |
|
return { |
|
"poses_feat":out, |
|
"rec_pose": out_poses, |
|
} |
|
|
|
class PoseDecoderLSTM(nn.Module): |
|
""" |
|
input bs*n*64 |
|
""" |
|
def __init__(self,pose_dim, feature_length): |
|
super().__init__() |
|
self.pose_dim = pose_dim |
|
self.base = feature_length |
|
self.hidden_size = 256 |
|
self.lstm_d = nn.LSTM(self.base, hidden_size=self.hidden_size, num_layers=4, batch_first=True, |
|
bidirectional=True, dropout=0.3) |
|
self.out_d = nn.Sequential( |
|
nn.Linear(self.hidden_size, self.hidden_size // 2), |
|
nn.LeakyReLU(True), |
|
nn.Linear(self.hidden_size // 2, self.pose_dim) |
|
) |
|
|
|
def forward(self, latent_code): |
|
output, _ = self.lstm_d(latent_code) |
|
output = output[:, :, :self.hidden_size] + output[:, :, self.hidden_size:] |
|
|
|
output = self.out_d(output.reshape(-1, output.shape[2])) |
|
output = output.view(latent_code.shape[0], latent_code.shape[1], -1) |
|
|
|
return output |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__(self, d_model, dropout=0.1, max_len=5000): |
|
super(PositionalEncoding, self).__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0) |
|
|
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
|
|
x = x + self.pe[:, :x.shape[1]] |
|
return self.dropout(x) |
|
|
|
class Encoder_TRANSFORMER(nn.Module): |
|
def __init__(self, args): |
|
super().__init__() |
|
self.skelEmbedding = nn.Linear(args.vae_test_dim, args.vae_length) |
|
self.sequence_pos_encoder = PositionalEncoding(args.vae_length, 0.3) |
|
seqTransEncoderLayer = nn.TransformerEncoderLayer(d_model=args.vae_length, |
|
nhead=4, |
|
dim_feedforward=1025, |
|
dropout=0.3, |
|
activation="gelu", |
|
batch_first=True |
|
) |
|
self.seqTransEncoder = nn.TransformerEncoder(seqTransEncoderLayer, |
|
num_layers=4) |
|
def _generate_square_subsequent_mask(self, sz): |
|
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) |
|
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) |
|
return mask |
|
|
|
def forward(self, inputs): |
|
x = self.skelEmbedding(inputs) |
|
|
|
xseq = self.sequence_pos_encoder(x) |
|
device = xseq.device |
|
|
|
final = self.seqTransEncoder(xseq) |
|
|
|
mu = final[:, 0:1, :] |
|
logvar = final[:, 1:2, :] |
|
return final, mu, logvar |
|
|
|
class Decoder_TRANSFORMER(nn.Module): |
|
def __init__(self, args): |
|
super().__init__() |
|
self.vae_test_len = args.vae_test_len |
|
self.vae_length = args.vae_length |
|
self.sequence_pos_encoder = PositionalEncoding(args.vae_length, 0.3) |
|
seqTransDecoderLayer = nn.TransformerDecoderLayer(d_model=args.vae_length, |
|
nhead=4, |
|
dim_feedforward=1024, |
|
dropout=0.3, |
|
activation="gelu", |
|
batch_first=True) |
|
self.seqTransDecoder = nn.TransformerDecoder(seqTransDecoderLayer, |
|
num_layers=4) |
|
self.finallayer = nn.Linear(args.vae_length, args.vae_test_dim) |
|
|
|
def forward(self, inputs): |
|
timequeries = torch.zeros(inputs.shape[0], self.vae_test_len, self.vae_length, device=inputs.device) |
|
timequeries = self.sequence_pos_encoder(timequeries) |
|
output = self.seqTransDecoder(tgt=timequeries, memory=inputs) |
|
output = self.finallayer(output) |
|
return output |
|
|
|
|
|
''' |
|
from NeMF, |
|
NeMF: Neural Motion Fields for Kinematic Animation |
|
''' |
|
from .utils.skeleton import ResidualBlock, SkeletonResidual, residual_ratio, SkeletonConv, SkeletonPool, find_neighbor, build_edge_topology |
|
class LocalEncoder(nn.Module): |
|
def __init__(self, args, topology): |
|
super(LocalEncoder, self).__init__() |
|
args.channel_base = 6 |
|
args.activation = "tanh" |
|
args.use_residual_blocks=True |
|
args.z_dim=1024 |
|
args.temporal_scale=8 |
|
args.kernel_size=4 |
|
args.num_layers=args.vae_layer |
|
args.skeleton_dist=2 |
|
args.extra_conv=0 |
|
|
|
args.padding_mode="constant" |
|
args.skeleton_pool="mean" |
|
args.upsampling="linear" |
|
|
|
|
|
self.topologies = [topology] |
|
self.channel_base = [args.channel_base] |
|
|
|
self.channel_list = [] |
|
self.edge_num = [len(topology)] |
|
self.pooling_list = [] |
|
self.layers = nn.ModuleList() |
|
self.args = args |
|
|
|
|
|
kernel_size = args.kernel_size |
|
kernel_even = False if kernel_size % 2 else True |
|
padding = (kernel_size - 1) // 2 |
|
bias = True |
|
self.grow = args.vae_grow |
|
for i in range(args.num_layers): |
|
self.channel_base.append(self.channel_base[-1]*self.grow[i]) |
|
|
|
for i in range(args.num_layers): |
|
seq = [] |
|
neighbour_list = find_neighbor(self.topologies[i], args.skeleton_dist) |
|
in_channels = self.channel_base[i] * self.edge_num[i] |
|
out_channels = self.channel_base[i + 1] * self.edge_num[i] |
|
if i == 0: |
|
self.channel_list.append(in_channels) |
|
self.channel_list.append(out_channels) |
|
last_pool = True if i == args.num_layers - 1 else False |
|
|
|
|
|
pool = SkeletonPool(edges=self.topologies[i], pooling_mode=args.skeleton_pool, |
|
channels_per_edge=out_channels // len(neighbour_list), last_pool=last_pool) |
|
|
|
if args.use_residual_blocks: |
|
|
|
seq.append(SkeletonResidual(self.topologies[i], neighbour_list, joint_num=self.edge_num[i], in_channels=in_channels, out_channels=out_channels, |
|
kernel_size=kernel_size, stride=2, padding=padding, padding_mode=args.padding_mode, bias=bias, |
|
extra_conv=args.extra_conv, pooling_mode=args.skeleton_pool, activation=args.activation, last_pool=last_pool)) |
|
else: |
|
for _ in range(args.extra_conv): |
|
|
|
seq.append(SkeletonConv(neighbour_list, in_channels=in_channels, out_channels=in_channels, |
|
joint_num=self.edge_num[i], kernel_size=kernel_size - 1 if kernel_even else kernel_size, |
|
stride=1, |
|
padding=padding, padding_mode=args.padding_mode, bias=bias)) |
|
seq.append(nn.PReLU() if args.activation == 'relu' else nn.Tanh()) |
|
|
|
seq.append(SkeletonConv(neighbour_list, in_channels=in_channels, out_channels=out_channels, |
|
joint_num=self.edge_num[i], kernel_size=kernel_size, stride=2, |
|
padding=padding, padding_mode=args.padding_mode, bias=bias, add_offset=False, |
|
in_offset_channel=3 * self.channel_base[i] // self.channel_base[0])) |
|
|
|
|
|
seq.append(pool) |
|
seq.append(nn.PReLU() if args.activation == 'relu' else nn.Tanh()) |
|
self.layers.append(nn.Sequential(*seq)) |
|
|
|
self.topologies.append(pool.new_edges) |
|
self.pooling_list.append(pool.pooling_list) |
|
self.edge_num.append(len(self.topologies[-1])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, input): |
|
|
|
output = input.permute(0, 2, 1) |
|
for layer in self.layers: |
|
output = layer(output) |
|
|
|
output = output.permute(0, 2, 1) |
|
return output |