|
import random |
|
import math |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import smplx |
|
import copy |
|
from .motion_encoder import * |
|
|
|
|
|
class VAEConvZero(nn.Module): |
|
def __init__(self, args): |
|
super(VAEConvZero, self).__init__() |
|
self.encoder = VQEncoderV5(args) |
|
|
|
self.decoder = VQDecoderV5(args) |
|
|
|
def forward(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
|
|
|
|
rec_pose = self.decoder(pre_latent) |
|
return { |
|
|
|
|
|
|
|
"rec_pose": rec_pose |
|
} |
|
|
|
class VAEConv(nn.Module): |
|
def __init__(self, args): |
|
super(VAEConv, self).__init__() |
|
self.encoder = VQEncoderV3(args) |
|
self.decoder = VQDecoderV3(args) |
|
self.fc_mu = nn.Linear(args.vae_length, args.vae_length) |
|
self.fc_logvar = nn.Linear(args.vae_length, args.vae_length) |
|
self.variational = args.variational |
|
|
|
def forward(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
mu, logvar = None, None |
|
if self.variational: |
|
mu = self.fc_mu(pre_latent) |
|
logvar = self.fc_logvar(pre_latent) |
|
pre_latent = reparameterize(mu, logvar) |
|
rec_pose = self.decoder(pre_latent) |
|
return { |
|
"poses_feat":pre_latent, |
|
"rec_pose": rec_pose, |
|
"pose_mu": mu, |
|
"pose_logvar": logvar, |
|
} |
|
|
|
def map2latent(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
if self.variational: |
|
mu = self.fc_mu(pre_latent) |
|
logvar = self.fc_logvar(pre_latent) |
|
pre_latent = reparameterize(mu, logvar) |
|
return pre_latent |
|
|
|
def decode(self, pre_latent): |
|
rec_pose = self.decoder(pre_latent) |
|
return rec_pose |
|
|
|
class VAESKConv(VAEConv): |
|
def __init__(self, args): |
|
super(VAESKConv, self).__init__(args) |
|
smpl_fname = args.data_path_1+'smplx_models/smplx/SMPLX_NEUTRAL_2020.npz' |
|
smpl_data = np.load(smpl_fname, encoding='latin1') |
|
parents = smpl_data['kintree_table'][0].astype(np.int32) |
|
edges = build_edge_topology(parents) |
|
self.encoder = LocalEncoder(args, edges) |
|
self.decoder = VQDecoderV3(args) |
|
|
|
class VAEConvMLP(VAEConv): |
|
def __init__(self, args): |
|
super(VAEConvMLP, self).__init__(args) |
|
self.encoder = PoseEncoderConv(args.vae_test_len, args.vae_test_dim, feature_length=args.vae_length) |
|
self.decoder = PoseDecoderConv(args.vae_test_len, args.vae_test_dim, feature_length=args.vae_length) |
|
|
|
class VAELSTM(VAEConv): |
|
def __init__(self, args): |
|
super(VAELSTM, self).__init__(args) |
|
pose_dim = args.vae_test_dim |
|
feature_length = args.vae_length |
|
self.encoder = PoseEncoderLSTM_Resnet(pose_dim, feature_length=feature_length) |
|
self.decoder = PoseDecoderLSTM(pose_dim, feature_length=feature_length) |
|
|
|
class VAETransformer(VAEConv): |
|
def __init__(self, args): |
|
super(VAETransformer, self).__init__(args) |
|
self.encoder = Encoder_TRANSFORMER(args) |
|
self.decoder = Decoder_TRANSFORMER(args) |
|
|
|
|
|
class VQVAEConv(nn.Module): |
|
def __init__(self, args): |
|
super(VQVAEConv, self).__init__() |
|
self.encoder = VQEncoderV3(args) |
|
self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) |
|
self.decoder = VQDecoderV3(args) |
|
|
|
def forward(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
|
|
embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) |
|
rec_pose = self.decoder(vq_latent) |
|
return { |
|
"poses_feat":vq_latent, |
|
"embedding_loss":embedding_loss, |
|
"perplexity":perplexity, |
|
"rec_pose": rec_pose |
|
} |
|
|
|
def map2index(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
index = self.quantizer.map2index(pre_latent) |
|
return index |
|
|
|
def map2latent(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
index = self.quantizer.map2index(pre_latent) |
|
z_q = self.quantizer.get_codebook_entry(index) |
|
return z_q |
|
|
|
def decode(self, index): |
|
z_q = self.quantizer.get_codebook_entry(index) |
|
rec_pose = self.decoder(z_q) |
|
return rec_pose |
|
|
|
class VQVAESKConv(VQVAEConv): |
|
def __init__(self, args): |
|
super(VQVAESKConv, self).__init__(args) |
|
smpl_fname = args.data_path_1+'smplx_models/smplx/SMPLX_NEUTRAL_2020.npz' |
|
smpl_data = np.load(smpl_fname, encoding='latin1') |
|
parents = smpl_data['kintree_table'][0].astype(np.int32) |
|
edges = build_edge_topology(parents) |
|
self.encoder = LocalEncoder(args, edges) |
|
|
|
|
|
class VQVAEConvStride(nn.Module): |
|
def __init__(self, args): |
|
super(VQVAEConvStride, self).__init__() |
|
self.encoder = VQEncoderV4(args) |
|
self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) |
|
self.decoder = VQDecoderV4(args) |
|
|
|
def forward(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
|
|
embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) |
|
rec_pose = self.decoder(vq_latent) |
|
return { |
|
"poses_feat":vq_latent, |
|
"embedding_loss":embedding_loss, |
|
"perplexity":perplexity, |
|
"rec_pose": rec_pose |
|
} |
|
|
|
def map2index(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
index = self.quantizer.map2index(pre_latent) |
|
return index |
|
|
|
def map2latent(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
index = self.quantizer.map2index(pre_latent) |
|
z_q = self.quantizer.get_codebook_entry(index) |
|
return z_q |
|
|
|
def decode(self, index): |
|
z_q = self.quantizer.get_codebook_entry(index) |
|
rec_pose = self.decoder(z_q) |
|
return rec_pose |
|
|
|
class VQVAEConvZero(nn.Module): |
|
def __init__(self, args): |
|
super(VQVAEConvZero, self).__init__() |
|
self.encoder = VQEncoderV5(args) |
|
self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) |
|
self.decoder = VQDecoderV5(args) |
|
|
|
def forward(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
|
|
embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) |
|
rec_pose = self.decoder(vq_latent) |
|
return { |
|
"poses_feat":vq_latent, |
|
"embedding_loss":embedding_loss, |
|
"perplexity":perplexity, |
|
"rec_pose": rec_pose |
|
} |
|
|
|
def map2index(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
index = self.quantizer.map2index(pre_latent) |
|
return index |
|
|
|
def map2latent(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
index = self.quantizer.map2index(pre_latent) |
|
z_q = self.quantizer.get_codebook_entry(index) |
|
return z_q |
|
|
|
def decode(self, index): |
|
z_q = self.quantizer.get_codebook_entry(index) |
|
rec_pose = self.decoder(z_q) |
|
return rec_pose |
|
|
|
|
|
class VAEConvZero(nn.Module): |
|
def __init__(self, args): |
|
super(VAEConvZero, self).__init__() |
|
self.encoder = VQEncoderV5(args) |
|
|
|
self.decoder = VQDecoderV5(args) |
|
|
|
def forward(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
|
|
|
|
rec_pose = self.decoder(pre_latent) |
|
return { |
|
|
|
|
|
|
|
"rec_pose": rec_pose |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VQVAEConvZero3(nn.Module): |
|
def __init__(self, args): |
|
super(VQVAEConvZero3, self).__init__() |
|
self.encoder = VQEncoderV5(args) |
|
self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) |
|
self.decoder = VQDecoderV5(args) |
|
|
|
def forward(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
|
|
embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) |
|
rec_pose = self.decoder(vq_latent) |
|
return { |
|
"poses_feat":vq_latent, |
|
"embedding_loss":embedding_loss, |
|
"perplexity":perplexity, |
|
"rec_pose": rec_pose |
|
} |
|
|
|
def map2index(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
index = self.quantizer.map2index(pre_latent) |
|
return index |
|
|
|
def map2latent(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
index = self.quantizer.map2index(pre_latent) |
|
z_q = self.quantizer.get_codebook_entry(index) |
|
return z_q |
|
|
|
def decode(self, index): |
|
z_q = self.quantizer.get_codebook_entry(index) |
|
rec_pose = self.decoder(z_q) |
|
return rec_pose |
|
|
|
class VQVAEConvZero2(nn.Module): |
|
def __init__(self, args): |
|
super(VQVAEConvZero2, self).__init__() |
|
self.encoder = VQEncoderV5(args) |
|
self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) |
|
self.decoder = VQDecoderV7(args) |
|
|
|
def forward(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
|
|
embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) |
|
rec_pose = self.decoder(vq_latent) |
|
return { |
|
"poses_feat":vq_latent, |
|
"embedding_loss":embedding_loss, |
|
"perplexity":perplexity, |
|
"rec_pose": rec_pose |
|
} |
|
|
|
def map2index(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
index = self.quantizer.map2index(pre_latent) |
|
return index |
|
|
|
def map2latent(self, inputs): |
|
pre_latent = self.encoder(inputs) |
|
index = self.quantizer.map2index(pre_latent) |
|
z_q = self.quantizer.get_codebook_entry(index) |
|
return z_q |
|
|
|
def decode(self, index): |
|
z_q = self.quantizer.get_codebook_entry(index) |
|
rec_pose = self.decoder(z_q) |
|
return rec_pose |
|
|
|
class VQVAE2(nn.Module): |
|
def __init__(self, args): |
|
super(VQVAE2, self).__init__() |
|
|
|
args_bottom = copy.deepcopy(args) |
|
args_bottom.vae_layer = 2 |
|
self.bottom_encoder = VQEncoderV6(args_bottom) |
|
self.bottom_quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) |
|
args_bottom.vae_test_dim = args.vae_test_dim |
|
self.bottom_decoder = VQDecoderV6(args_bottom) |
|
|
|
|
|
args_top = copy.deepcopy(args) |
|
args_top.vae_layer = 3 |
|
args_top.vae_test_dim = args.vae_length |
|
self.top_encoder = VQEncoderV3(args_top) |
|
self.quantize_conv_t = nn.Conv1d(args.vae_length+args.vae_length, args.vae_length, 1) |
|
self.top_quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) |
|
|
|
layers = [ |
|
nn.Upsample(scale_factor=2, mode='nearest'), |
|
nn.Conv1d(args.vae_length, args.vae_length, kernel_size=3, stride=1, padding=1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Upsample(scale_factor=2, mode='nearest'), |
|
nn.Conv1d(args.vae_length, args.vae_length, kernel_size=3, stride=1, padding=1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Upsample(scale_factor=2, mode='nearest'), |
|
nn.Conv1d(args.vae_length, args.vae_length, kernel_size=3, stride=1, padding=1), |
|
nn.LeakyReLU(0.2, inplace=True) |
|
] |
|
self.upsample_t= nn.Sequential(*layers) |
|
self.top_decoder = VQDecoderV3(args_top) |
|
|
|
def forward(self, inputs): |
|
|
|
enc_b = self.bottom_encoder(inputs) |
|
enc_t = self.top_encoder(enc_b) |
|
|
|
top_embedding_loss, quant_t, _, top_perplexity = self.top_quantizer(enc_t) |
|
|
|
dec_t = self.top_decoder(quant_t) |
|
|
|
enc_b = torch.cat([dec_t, enc_b], dim=2).permute(0,2,1) |
|
|
|
quant_b = self.quantize_conv_t(enc_b).permute(0,2,1) |
|
|
|
bottom_embedding_loss, quant_b, _, bottom_perplexity = self.bottom_quantizer(quant_b) |
|
|
|
upsample_t = self.upsample_t(quant_t.permute(0,2,1)).permute(0,2,1) |
|
|
|
quant = torch.cat([upsample_t, quant_b], 2) |
|
rec_pose = self.bottom_decoder(quant) |
|
|
|
return { |
|
"poses_feat_top": quant_t, |
|
"pose_feat_bottom": quant_b, |
|
"embedding_loss":top_embedding_loss+bottom_embedding_loss, |
|
|
|
"rec_pose": rec_pose |
|
} |
|
|
|
def map2index(self, inputs): |
|
enc_b = self.bottom_encoder(inputs) |
|
enc_t = self.top_encoder(enc_b) |
|
|
|
_, quant_t, _, _ = self.top_quantizer(enc_t) |
|
top_index = self.top_quantizer.map2index(enc_t) |
|
dec_t = self.top_decoder(quant_t) |
|
|
|
enc_b = torch.cat([dec_t, enc_b], dim=2).permute(0,2,1) |
|
|
|
quant_b = self.quantize_conv_t(enc_b).permute(0,2,1) |
|
|
|
bottom_index = self.bottom_quantizer.map2index(quant_b) |
|
return top_index, bottom_index |
|
|
|
def get_top_laent(self, top_index): |
|
z_q_top = self.top_quantizer.get_codebook_entry(top_index) |
|
return z_q_top |
|
|
|
def map2latent(self, inputs): |
|
enc_b = self.bottom_encoder(inputs) |
|
enc_t = self.top_encoder(enc_b) |
|
|
|
_, quant_t, _, _ = self.top_quantizer(enc_t) |
|
top_index = self.top_quantizer.map2index(enc_t) |
|
dec_t = self.top_decoder(quant_t) |
|
|
|
enc_b = torch.cat([dec_t, enc_b], dim=2).permute(0,2,1) |
|
|
|
quant_b = self.quantize_conv_t(enc_b).permute(0,2,1) |
|
|
|
bottom_index = self.bottom_quantizer.map2index(quant_b) |
|
z_q_top = self.top_quantizer.get_codebook_entry(top_index) |
|
z_q_bottom = self.bottom_quantizer.get_codebook_entry(bottom_index) |
|
return z_q_top, z_q_bottom |
|
|
|
def map2latent_top(self, inputs): |
|
enc_b = self.bottom_encoder(inputs) |
|
enc_t = self.top_encoder(enc_b) |
|
top_index = self.top_quantizer.map2index(enc_t) |
|
z_q_top = self.top_quantizer.get_codebook_entry(top_index) |
|
return z_q_top |
|
|
|
def decode(self, top_index, bottom_index): |
|
quant_t = self.top_quantizer.get_codebook_entry(top_index) |
|
quant_b = self.bottom_quantizer.get_codebook_entry(bottom_index) |
|
upsample_t = self.upsample_t(quant_t.permute(0,2,1)).permute(0,2,1) |
|
|
|
quant = torch.cat([upsample_t, quant_b], 2) |
|
rec_pose = self.bottom_decoder(quant) |
|
return rec_pose |