EMAGE / models /utils /audio_utils.py
H-Liu1997's picture
Upload folder using huggingface_hub
2d47d90 verified
raw
history blame
5.06 kB
import numpy as np
import torch as t
import models.utils.dist_adapter as dist
import soundfile
import librosa
from models.utils.dist_utils import print_once
class DefaultSTFTValues:
def __init__(self, hps):
self.sr = hps.sr
self.n_fft = 2048
self.hop_length = 256
self.window_size = 6 * self.hop_length
class STFTValues:
def __init__(self, hps, n_fft, hop_length, window_size):
self.sr = hps.sr
self.n_fft = n_fft
self.hop_length = hop_length
self.window_size = window_size
def calculate_bandwidth(dataset, hps, duration=600):
hps = DefaultSTFTValues(hps)
n_samples = int(dataset.sr * duration)
l1, total, total_sq, n_seen, idx = 0.0, 0.0, 0.0, 0.0, dist.get_rank()
spec_norm_total, spec_nelem = 0.0, 0.0
while n_seen < n_samples:
x = dataset[idx]
if isinstance(x, (tuple, list)):
x, y = x
samples = x.astype(np.float64)
stft = librosa.core.stft(np.mean(samples, axis=1), hps.n_fft, hop_length=hps.hop_length, win_length=hps.window_size)
spec = np.absolute(stft)
spec_norm_total += np.linalg.norm(spec)
spec_nelem += 1
n_seen += int(np.prod(samples.shape))
l1 += np.sum(np.abs(samples))
total += np.sum(samples)
total_sq += np.sum(samples ** 2)
idx += max(16, dist.get_world_size())
if dist.is_available():
from jukebox.utils.dist_utils import allreduce
n_seen = allreduce(n_seen)
total = allreduce(total)
total_sq = allreduce(total_sq)
l1 = allreduce(l1)
spec_nelem = allreduce(spec_nelem)
spec_norm_total = allreduce(spec_norm_total)
mean = total / n_seen
bandwidth = dict(l2 = total_sq / n_seen - mean ** 2,
l1 = l1 / n_seen,
spec = spec_norm_total / spec_nelem)
print_once(bandwidth)
return bandwidth
def audio_preprocess(x, hps):
# Extra layer in case we want to experiment with different preprocessing
# For two channel, blend randomly into mono (standard is .5 left, .5 right)
# x: NTC
# x = x.float()
# if x.shape[-1]==2:
# if hps.aug_blend:
# mix=t.rand((x.shape[0],1), device=x.device) #np.random.rand()
# else:
# mix = 0.5
# x=(mix*x[:,:,0]+(1-mix)*x[:,:,1])
# elif x.shape[-1]==1:
# x=x[:,:,0]
# else:
# assert False, f'Expected channels {hps.channels}. Got unknown {x.shape[-1]} channels'
# # x: NT -> NTC
# x = x.unsqueeze(2)
return x
def audio_postprocess(x, hps):
return x
def stft(sig, hps):
return t.stft(sig, hps.n_fft, hps.hop_length, win_length=hps.window_size, window=t.hann_window(hps.window_size, device=sig.device))
def spec(x, hps):
return t.norm(stft(x, hps), p=2, dim=-1)
def norm(x):
return (x.view(x.shape[0], -1) ** 2).sum(dim=-1).sqrt()
def squeeze(x):
if len(x.shape) == 3:
assert x.shape[-1] in [1,2]
x = t.mean(x, -1)
if len(x.shape) != 2:
raise ValueError(f'Unknown input shape {x.shape}')
return x
def spectral_loss(x_in, x_out, hps):
hps = DefaultSTFTValues(hps)
spec_in = spec(squeeze(x_in.float()), hps)
spec_out = spec(squeeze(x_out.float()), hps)
return norm(spec_in - spec_out)
def multispectral_loss(x_in, x_out, hps):
losses = []
assert len(hps.multispec_loss_n_fft) == len(hps.multispec_loss_hop_length) == len(hps.multispec_loss_window_size)
args = [hps.multispec_loss_n_fft,
hps.multispec_loss_hop_length,
hps.multispec_loss_window_size]
for n_fft, hop_length, window_size in zip(*args):
hps = STFTValues(hps, n_fft, hop_length, window_size)
spec_in = spec(squeeze(x_in.float()), hps)
spec_out = spec(squeeze(x_out.float()), hps)
losses.append(norm(spec_in - spec_out))
return sum(losses) / len(losses)
def spectral_convergence(x_in, x_out, hps, epsilon=2e-3):
hps = DefaultSTFTValues(hps)
spec_in = spec(squeeze(x_in.float()), hps)
spec_out = spec(squeeze(x_out.float()), hps)
gt_norm = norm(spec_in)
residual_norm = norm(spec_in - spec_out)
mask = (gt_norm > epsilon).float()
return (residual_norm * mask) / t.clamp(gt_norm, min=epsilon)
def log_magnitude_loss(x_in, x_out, hps, epsilon=1e-4):
hps = DefaultSTFTValues(hps)
spec_in = t.log(spec(squeeze(x_in.float()), hps) + epsilon)
spec_out = t.log(spec(squeeze(x_out.float()), hps) + epsilon)
return t.mean(t.abs(spec_in - spec_out))
def load_audio(file, sr, offset, duration, mono=False):
# Librosa loads more filetypes than soundfile
x, _ = librosa.load(file, sr=sr, mono=mono, offset=offset/sr, duration=duration/sr)
if len(x.shape) == 1:
x = x.reshape((1, -1))
return x
def save_wav(fname, aud, sr):
# clip before saving?
aud = t.clamp(aud, -1, 1).cpu().numpy()
for i in list(range(aud.shape[0])):
soundfile.write(f'{fname}/item_{i}.wav', aud[i], samplerate=sr, format='wav')