|
import numpy as np |
|
import torch as t |
|
import models.utils.dist_adapter as dist |
|
import soundfile |
|
import librosa |
|
from models.utils.dist_utils import print_once |
|
|
|
class DefaultSTFTValues: |
|
def __init__(self, hps): |
|
self.sr = hps.sr |
|
self.n_fft = 2048 |
|
self.hop_length = 256 |
|
self.window_size = 6 * self.hop_length |
|
|
|
class STFTValues: |
|
def __init__(self, hps, n_fft, hop_length, window_size): |
|
self.sr = hps.sr |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.window_size = window_size |
|
|
|
def calculate_bandwidth(dataset, hps, duration=600): |
|
hps = DefaultSTFTValues(hps) |
|
n_samples = int(dataset.sr * duration) |
|
l1, total, total_sq, n_seen, idx = 0.0, 0.0, 0.0, 0.0, dist.get_rank() |
|
spec_norm_total, spec_nelem = 0.0, 0.0 |
|
while n_seen < n_samples: |
|
x = dataset[idx] |
|
if isinstance(x, (tuple, list)): |
|
x, y = x |
|
samples = x.astype(np.float64) |
|
stft = librosa.core.stft(np.mean(samples, axis=1), hps.n_fft, hop_length=hps.hop_length, win_length=hps.window_size) |
|
spec = np.absolute(stft) |
|
spec_norm_total += np.linalg.norm(spec) |
|
spec_nelem += 1 |
|
n_seen += int(np.prod(samples.shape)) |
|
l1 += np.sum(np.abs(samples)) |
|
total += np.sum(samples) |
|
total_sq += np.sum(samples ** 2) |
|
idx += max(16, dist.get_world_size()) |
|
|
|
if dist.is_available(): |
|
from jukebox.utils.dist_utils import allreduce |
|
n_seen = allreduce(n_seen) |
|
total = allreduce(total) |
|
total_sq = allreduce(total_sq) |
|
l1 = allreduce(l1) |
|
spec_nelem = allreduce(spec_nelem) |
|
spec_norm_total = allreduce(spec_norm_total) |
|
|
|
mean = total / n_seen |
|
bandwidth = dict(l2 = total_sq / n_seen - mean ** 2, |
|
l1 = l1 / n_seen, |
|
spec = spec_norm_total / spec_nelem) |
|
print_once(bandwidth) |
|
return bandwidth |
|
|
|
def audio_preprocess(x, hps): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return x |
|
|
|
def audio_postprocess(x, hps): |
|
return x |
|
|
|
def stft(sig, hps): |
|
return t.stft(sig, hps.n_fft, hps.hop_length, win_length=hps.window_size, window=t.hann_window(hps.window_size, device=sig.device)) |
|
|
|
def spec(x, hps): |
|
return t.norm(stft(x, hps), p=2, dim=-1) |
|
|
|
def norm(x): |
|
return (x.view(x.shape[0], -1) ** 2).sum(dim=-1).sqrt() |
|
|
|
def squeeze(x): |
|
if len(x.shape) == 3: |
|
assert x.shape[-1] in [1,2] |
|
x = t.mean(x, -1) |
|
if len(x.shape) != 2: |
|
raise ValueError(f'Unknown input shape {x.shape}') |
|
return x |
|
|
|
def spectral_loss(x_in, x_out, hps): |
|
hps = DefaultSTFTValues(hps) |
|
spec_in = spec(squeeze(x_in.float()), hps) |
|
spec_out = spec(squeeze(x_out.float()), hps) |
|
return norm(spec_in - spec_out) |
|
|
|
def multispectral_loss(x_in, x_out, hps): |
|
losses = [] |
|
assert len(hps.multispec_loss_n_fft) == len(hps.multispec_loss_hop_length) == len(hps.multispec_loss_window_size) |
|
args = [hps.multispec_loss_n_fft, |
|
hps.multispec_loss_hop_length, |
|
hps.multispec_loss_window_size] |
|
for n_fft, hop_length, window_size in zip(*args): |
|
hps = STFTValues(hps, n_fft, hop_length, window_size) |
|
spec_in = spec(squeeze(x_in.float()), hps) |
|
spec_out = spec(squeeze(x_out.float()), hps) |
|
losses.append(norm(spec_in - spec_out)) |
|
return sum(losses) / len(losses) |
|
|
|
def spectral_convergence(x_in, x_out, hps, epsilon=2e-3): |
|
hps = DefaultSTFTValues(hps) |
|
spec_in = spec(squeeze(x_in.float()), hps) |
|
spec_out = spec(squeeze(x_out.float()), hps) |
|
|
|
gt_norm = norm(spec_in) |
|
residual_norm = norm(spec_in - spec_out) |
|
mask = (gt_norm > epsilon).float() |
|
return (residual_norm * mask) / t.clamp(gt_norm, min=epsilon) |
|
|
|
def log_magnitude_loss(x_in, x_out, hps, epsilon=1e-4): |
|
hps = DefaultSTFTValues(hps) |
|
spec_in = t.log(spec(squeeze(x_in.float()), hps) + epsilon) |
|
spec_out = t.log(spec(squeeze(x_out.float()), hps) + epsilon) |
|
return t.mean(t.abs(spec_in - spec_out)) |
|
|
|
def load_audio(file, sr, offset, duration, mono=False): |
|
|
|
x, _ = librosa.load(file, sr=sr, mono=mono, offset=offset/sr, duration=duration/sr) |
|
if len(x.shape) == 1: |
|
x = x.reshape((1, -1)) |
|
return x |
|
|
|
|
|
def save_wav(fname, aud, sr): |
|
|
|
aud = t.clamp(aud, -1, 1).cpu().numpy() |
|
for i in list(range(aud.shape[0])): |
|
soundfile.write(f'{fname}/item_{i}.wav', aud[i], samplerate=sr, format='wav') |
|
|
|
|
|
|