|
import librosa |
|
import glob |
|
import os |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import librosa.display |
|
from matplotlib.pyplot import figure |
|
import math |
|
from scipy.signal import argrelextrema |
|
|
|
|
|
class L1div(object): |
|
def __init__(self): |
|
self.counter = 0 |
|
self.sum = 0 |
|
def run(self, results): |
|
self.counter += results.shape[0] |
|
mean = np.mean(results, 0) |
|
for i in range(results.shape[0]): |
|
results[i, :] = abs(results[i, :] - mean) |
|
sum_l1 = np.sum(results) |
|
self.sum += sum_l1 |
|
def avg(self): |
|
return self.sum/self.counter |
|
def reset(self): |
|
self.counter = 0 |
|
self.sum = 0 |
|
|
|
|
|
class SRGR(object): |
|
def __init__(self, threshold=0.1, joints=47): |
|
self.threshold = threshold |
|
self.pose_dimes = joints |
|
self.counter = 0 |
|
self.sum = 0 |
|
|
|
def run(self, results, targets, semantic): |
|
results = results.reshape(-1, self.pose_dimes, 3) |
|
targets = targets.reshape(-1, self.pose_dimes, 3) |
|
semantic = semantic.reshape(-1) |
|
diff = np.sum(abs(results-targets),2) |
|
success = np.where(diff<self.threshold, 1.0, 0.0) |
|
for i in range(success.shape[0]): |
|
|
|
success[i, :] *= semantic[i] * (1/0.165) |
|
rate = np.sum(success)/(success.shape[0]*success.shape[1]) |
|
self.counter += success.shape[0] |
|
self.sum += (rate*success.shape[0]) |
|
return rate |
|
|
|
def avg(self): |
|
return self.sum/self.counter |
|
|
|
class alignment(object): |
|
def __init__(self, sigma, order, mmae=None, upper_body=[3,6,9,12,13,14,15,16,17,18,19,20,21]): |
|
self.sigma = sigma |
|
self.order = order |
|
self.upper_body= upper_body |
|
|
|
self.pose_data = [] |
|
self.mmae = mmae |
|
self.threshold = 0.3 |
|
|
|
def load_audio(self, wave, t_start=None, t_end=None, without_file=False, sr_audio=16000): |
|
hop_length = 512 |
|
if without_file: |
|
y = wave |
|
sr = sr_audio |
|
else: y, sr = librosa.load(wave) |
|
if t_start is None: |
|
short_y = y |
|
else: |
|
short_y = y[t_start:t_end] |
|
|
|
onset_t = librosa.onset.onset_detect(y=short_y, sr=sr_audio, hop_length=hop_length, units='time') |
|
return onset_t |
|
|
|
def load_pose(self, pose, t_start, t_end, pose_fps, without_file=False): |
|
data_each_file = [] |
|
if without_file: |
|
for line_data_np in pose: |
|
data_each_file.append(line_data_np) |
|
|
|
else: |
|
with open(pose, "r") as f: |
|
for i, line_data in enumerate(f.readlines()): |
|
if i < 432: continue |
|
line_data_np = np.fromstring(line_data, sep=" ",) |
|
if pose_fps == 15: |
|
if i % 2 == 0: |
|
continue |
|
data_each_file.append(np.concatenate([line_data_np[30:39], line_data_np[112:121], ],0)) |
|
|
|
data_each_file = np.array(data_each_file) |
|
|
|
|
|
joints = data_each_file.transpose(1, 0) |
|
dt = 1/pose_fps |
|
|
|
init_vel = (joints[:, 1:2] - joints[:, :1]) / dt |
|
|
|
middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt) |
|
|
|
final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt |
|
|
|
vel = np.concatenate([init_vel, middle_vel, final_vel], 1).transpose(1, 0).reshape(data_each_file.shape[0], -1, 3) |
|
|
|
|
|
vel = np.linalg.norm(vel, axis=2) / self.mmae |
|
|
|
beat_vel_all = [] |
|
for i in range(vel.shape[1]): |
|
vel_mask = np.where(vel[:, i]>self.threshold) |
|
|
|
|
|
|
|
|
|
beat_vel = argrelextrema(vel[t_start:t_end, i], np.less, order=self.order) |
|
|
|
beat_vel_list = [] |
|
for j in beat_vel[0]: |
|
if j in vel_mask[0]: |
|
beat_vel_list.append(j) |
|
beat_vel = np.array(beat_vel_list) |
|
beat_vel_all.append(beat_vel) |
|
|
|
return beat_vel_all |
|
|
|
|
|
def load_data(self, wave, pose, t_start, t_end, pose_fps): |
|
onset_raw, onset_bt, onset_bt_rms = self.load_audio(wave, t_start, t_end) |
|
beat_right_arm, beat_right_shoulder, beat_right_wrist, beat_left_arm, beat_left_shoulder, beat_left_wrist = self.load_pose(pose, t_start, t_end, pose_fps) |
|
return onset_raw, onset_bt, onset_bt_rms, beat_right_arm, beat_right_shoulder, beat_right_wrist, beat_left_arm, beat_left_shoulder, beat_left_wrist |
|
|
|
def eval_random_pose(self, wave, pose, t_start, t_end, pose_fps, num_random=60): |
|
onset_raw, onset_bt, onset_bt_rms = self.load_audio(wave, t_start, t_end) |
|
dur = t_end - t_start |
|
for i in range(num_random): |
|
beat_right_arm, beat_right_shoulder, beat_right_wrist, beat_left_arm, beat_left_shoulder, beat_left_wrist = self.load_pose(pose, i, i+dur, pose_fps) |
|
dis_all_b2a= self.calculate_align(onset_raw, onset_bt, onset_bt_rms, beat_right_arm, beat_right_shoulder, beat_right_wrist, beat_left_arm, beat_left_shoulder, beat_left_wrist) |
|
print(f"{i}s: ",dis_all_b2a) |
|
|
|
|
|
@staticmethod |
|
def plot_onsets(audio, sr, onset_times_1, onset_times_2): |
|
import librosa |
|
import librosa.display |
|
import matplotlib.pyplot as plt |
|
|
|
fig, axarr = plt.subplots(2, 1, figsize=(10, 10), sharex=True) |
|
|
|
|
|
librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[0]) |
|
librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[1]) |
|
|
|
|
|
for onset in onset_times_1: |
|
axarr[0].axvline(onset, color='r', linestyle='--', alpha=0.9, label='Onset Method 1') |
|
axarr[0].legend() |
|
axarr[0].set(title='Onset Method 1', xlabel='', ylabel='Amplitude') |
|
|
|
|
|
for onset in onset_times_2: |
|
axarr[1].axvline(onset, color='b', linestyle='-', alpha=0.7, label='Onset Method 2') |
|
axarr[1].legend() |
|
axarr[1].set(title='Onset Method 2', xlabel='Time (s)', ylabel='Amplitude') |
|
|
|
|
|
|
|
handles, labels = plt.gca().get_legend_handles_labels() |
|
by_label = dict(zip(labels, handles)) |
|
plt.legend(by_label.values(), by_label.keys()) |
|
|
|
|
|
plt.title("Audio waveform with Onsets") |
|
plt.savefig("./onset.png", dpi=500) |
|
|
|
def audio_beat_vis(self, onset_raw, onset_bt, onset_bt_rms): |
|
figure(figsize=(24, 6), dpi=80) |
|
fig, ax = plt.subplots(nrows=4, sharex=True) |
|
librosa.display.specshow(librosa.amplitude_to_db(self.S, ref=np.max), |
|
y_axis='log', x_axis='time', ax=ax[0]) |
|
ax[0].label_outer() |
|
ax[1].plot(self.times, self.oenv, label='Onset strength') |
|
ax[1].vlines(librosa.frames_to_time(onset_raw), 0, self.oenv.max(), label='Raw onsets', color='r') |
|
ax[1].legend() |
|
ax[1].label_outer() |
|
|
|
ax[2].plot(self.times, self.oenv, label='Onset strength') |
|
ax[2].vlines(librosa.frames_to_time(onset_bt), 0, self.oenv.max(), label='Backtracked', color='r') |
|
ax[2].legend() |
|
ax[2].label_outer() |
|
|
|
ax[3].plot(self.times, self.rms[0], label='RMS') |
|
ax[3].vlines(librosa.frames_to_time(onset_bt_rms), 0, self.oenv.max(), label='Backtracked (RMS)', color='r') |
|
ax[3].legend() |
|
fig.savefig("./onset.png", dpi=500) |
|
|
|
@staticmethod |
|
def motion_frames2time(vel, offset, pose_fps): |
|
time_vel = vel/pose_fps + offset |
|
return time_vel |
|
|
|
@staticmethod |
|
def GAHR(a, b, sigma): |
|
dis_all_a2b = 0 |
|
dis_all_b2a = 0 |
|
for b_each in b: |
|
l2_min = np.inf |
|
for a_each in a: |
|
l2_dis = abs(a_each - b_each) |
|
if l2_dis < l2_min: |
|
l2_min = l2_dis |
|
dis_all_b2a += math.exp(-(l2_min**2)/(2*sigma**2)) |
|
dis_all_b2a /= len(b) |
|
return dis_all_b2a |
|
|
|
@staticmethod |
|
def fix_directed_GAHR(a, b, sigma): |
|
a = alignment.motion_frames2time(a, 0, 30) |
|
b = alignment.motion_frames2time(b, 0, 30) |
|
t = len(a)/30 |
|
a = [0] + a + [t] |
|
b = [0] + b + [t] |
|
dis_a2b = alignment.GAHR(a, b, sigma) |
|
return dis_a2b |
|
|
|
def calculate_align(self, onset_bt_rms, beat_vel, pose_fps=30): |
|
audio_bt = onset_bt_rms |
|
avg_dis_all_b2a_list = [] |
|
for its, beat_vel_each in enumerate(beat_vel): |
|
if its not in self.upper_body: |
|
continue |
|
|
|
|
|
pose_bt = self.motion_frames2time(beat_vel_each, 0, pose_fps) |
|
|
|
avg_dis_all_b2a_list.append(self.GAHR(pose_bt, audio_bt, self.sigma)) |
|
|
|
avg_dis_all_b2a = sum(avg_dis_all_b2a_list)/len(avg_dis_all_b2a_list) |
|
|
|
return avg_dis_all_b2a |