|
import spaces |
|
import os |
|
|
|
|
|
import OpenGL.GL as gl |
|
os.environ["PYOPENGL_PLATFORM"] = "egl" |
|
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1" |
|
import signal |
|
import time |
|
import csv |
|
import sys |
|
import warnings |
|
import random |
|
import gradio as gr |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.distributed as dist |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
import torch.multiprocessing as mp |
|
import numpy as np |
|
import time |
|
import pprint |
|
from loguru import logger |
|
import smplx |
|
from torch.utils.tensorboard import SummaryWriter |
|
import wandb |
|
import matplotlib.pyplot as plt |
|
from utils import config, logger_tools, other_tools_hf, metric, data_transfer |
|
from dataloaders import data_tools |
|
from dataloaders.build_vocab import Vocab |
|
from optimizers.optim_factory import create_optimizer |
|
from optimizers.scheduler_factory import create_scheduler |
|
from optimizers.loss_factory import get_loss_func |
|
from dataloaders.data_tools import joints_list |
|
from utils import rotation_conversions as rc |
|
import soundfile as sf |
|
import librosa |
|
|
|
def inverse_selection_tensor(filtered_t, selection_array, n): |
|
selection_array = torch.from_numpy(selection_array).cuda() |
|
original_shape_t = torch.zeros((n, 165)).cuda() |
|
selected_indices = torch.where(selection_array == 1)[0] |
|
for i in range(n): |
|
original_shape_t[i, selected_indices] = filtered_t[i] |
|
return original_shape_t |
|
|
|
@spaces.GPU(duration=120) |
|
def test_demo_gpu( |
|
model, vq_model_face, vq_model_upper, vq_model_hands, vq_model_lower, global_motion, smplx_model, |
|
dict_data, |
|
args, |
|
joints, joint_mask_upper, joint_mask_lower, joint_mask_hands, |
|
log_softmax, |
|
): |
|
rank = 0 |
|
other_tools_hf.load_checkpoints(vq_model_face, args.data_path_1 + "pretrained_vq/last_790_face_v2.bin", args.e_name) |
|
other_tools_hf.load_checkpoints(vq_model_upper, args.data_path_1 + "pretrained_vq/upper_vertex_1layer_710.bin", args.e_name) |
|
other_tools_hf.load_checkpoints(vq_model_hands, args.data_path_1 + "pretrained_vq/hands_vertex_1layer_710.bin", args.e_name) |
|
other_tools_hf.load_checkpoints(vq_model_lower, args.data_path_1 + "pretrained_vq/lower_foot_600.bin", args.e_name) |
|
other_tools_hf.load_checkpoints(global_motion, args.data_path_1 + "pretrained_vq/last_1700_foot.bin", args.e_name) |
|
other_tools_hf.load_checkpoints(model, args.test_ckpt, args.g_name) |
|
model.to(rank).eval() |
|
smplx_model.to(rank).eval() |
|
vq_model_face.to(rank).eval() |
|
vq_model_upper.to(rank).eval() |
|
vq_model_hands.to(rank).eval() |
|
vq_model_lower.to(rank).eval() |
|
global_motion.to(rank).eval() |
|
|
|
with torch.no_grad(): |
|
tar_pose_raw = dict_data["pose"] |
|
tar_pose = tar_pose_raw[:, :, :165].to(rank) |
|
tar_contact = tar_pose_raw[:, :, 165:169].to(rank) |
|
tar_trans = dict_data["trans"].to(rank) |
|
tar_exps = dict_data["facial"].to(rank) |
|
in_audio = dict_data["audio"].to(rank) |
|
in_word = None |
|
tar_beta = dict_data["beta"].to(rank) |
|
tar_id = dict_data["id"].to(rank).long() |
|
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], joints |
|
|
|
tar_pose_jaw = tar_pose[:, :, 66:69] |
|
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3)) |
|
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6) |
|
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2) |
|
|
|
tar_pose_hands = tar_pose[:, :, 25*3:55*3] |
|
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3)) |
|
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6) |
|
|
|
tar_pose_upper = tar_pose[:, :, joint_mask_upper.astype(bool)] |
|
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3)) |
|
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6) |
|
|
|
tar_pose_leg = tar_pose[:, :, joint_mask_lower.astype(bool)] |
|
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3)) |
|
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6) |
|
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2) |
|
|
|
|
|
|
|
tar4dis = torch.cat([tar_pose_jaw, tar_pose_upper, tar_pose_hands, tar_pose_leg], dim=2) |
|
|
|
tar_index_value_face_top = vq_model_face.map2index(tar_pose_face) |
|
tar_index_value_upper_top = vq_model_upper.map2index(tar_pose_upper) |
|
tar_index_value_hands_top = vq_model_hands.map2index(tar_pose_hands) |
|
tar_index_value_lower_top = vq_model_lower.map2index(tar_pose_lower) |
|
|
|
latent_face_top = vq_model_face.map2latent(tar_pose_face) |
|
latent_upper_top = vq_model_upper.map2latent(tar_pose_upper) |
|
latent_hands_top = vq_model_hands.map2latent(tar_pose_hands) |
|
latent_lower_top = vq_model_lower.map2latent(tar_pose_lower) |
|
|
|
latent_in = torch.cat([latent_upper_top, latent_hands_top, latent_lower_top], dim=2) |
|
|
|
index_in = torch.stack([tar_index_value_upper_top, tar_index_value_hands_top, tar_index_value_lower_top], dim=-1).long() |
|
|
|
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3)) |
|
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6) |
|
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1) |
|
|
|
loaded_data = { |
|
"tar_pose_jaw": tar_pose_jaw, |
|
"tar_pose_face": tar_pose_face, |
|
"tar_pose_upper": tar_pose_upper, |
|
"tar_pose_lower": tar_pose_lower, |
|
"tar_pose_hands": tar_pose_hands, |
|
'tar_pose_leg': tar_pose_leg, |
|
"in_audio": in_audio, |
|
"in_word": in_word, |
|
"tar_trans": tar_trans, |
|
"tar_exps": tar_exps, |
|
"tar_beta": tar_beta, |
|
"tar_pose": tar_pose, |
|
"tar4dis": tar4dis, |
|
"tar_index_value_face_top": tar_index_value_face_top, |
|
"tar_index_value_upper_top": tar_index_value_upper_top, |
|
"tar_index_value_hands_top": tar_index_value_hands_top, |
|
"tar_index_value_lower_top": tar_index_value_lower_top, |
|
"latent_face_top": latent_face_top, |
|
"latent_upper_top": latent_upper_top, |
|
"latent_hands_top": latent_hands_top, |
|
"latent_lower_top": latent_lower_top, |
|
"latent_in": latent_in, |
|
"index_in": index_in, |
|
"tar_id": tar_id, |
|
"latent_all": latent_all, |
|
"tar_pose_6d": tar_pose_6d, |
|
"tar_contact": tar_contact, |
|
} |
|
|
|
mode = 'test' |
|
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], joints |
|
tar_pose = loaded_data["tar_pose"] |
|
tar_beta = loaded_data["tar_beta"] |
|
in_word =None |
|
tar_exps = loaded_data["tar_exps"] |
|
tar_contact = loaded_data["tar_contact"] |
|
in_audio = loaded_data["in_audio"] |
|
tar_trans = loaded_data["tar_trans"] |
|
|
|
remain = n%8 |
|
if remain != 0: |
|
tar_pose = tar_pose[:, :-remain, :] |
|
tar_beta = tar_beta[:, :-remain, :] |
|
tar_trans = tar_trans[:, :-remain, :] |
|
|
|
tar_exps = tar_exps[:, :-remain, :] |
|
tar_contact = tar_contact[:, :-remain, :] |
|
n = n - remain |
|
|
|
tar_pose_jaw = tar_pose[:, :, 66:69] |
|
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3)) |
|
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6) |
|
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2) |
|
|
|
tar_pose_hands = tar_pose[:, :, 25*3:55*3] |
|
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3)) |
|
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6) |
|
|
|
tar_pose_upper = tar_pose[:, :, joint_mask_upper.astype(bool)] |
|
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3)) |
|
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6) |
|
|
|
tar_pose_leg = tar_pose[:, :, joint_mask_lower.astype(bool)] |
|
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3)) |
|
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6) |
|
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2) |
|
|
|
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3)) |
|
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6) |
|
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1) |
|
|
|
rec_index_all_face = [] |
|
rec_index_all_upper = [] |
|
rec_index_all_lower = [] |
|
rec_index_all_hands = [] |
|
|
|
roundt = (n - args.pre_frames) // (args.pose_length - args.pre_frames) |
|
remain = (n - args.pre_frames) % (args.pose_length - args.pre_frames) |
|
round_l = args.pose_length - args.pre_frames |
|
|
|
for i in range(0, roundt): |
|
|
|
|
|
in_audio_tmp = in_audio[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*args.pre_frames] |
|
in_id_tmp = loaded_data['tar_id'][:, i*(round_l):(i+1)*(round_l)+args.pre_frames] |
|
mask_val = torch.ones(bs, args.pose_length, args.pose_dims+3+4).float().cuda() |
|
mask_val[:, :args.pre_frames, :] = 0.0 |
|
if i == 0: |
|
latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+args.pre_frames, :] |
|
else: |
|
latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+args.pre_frames, :] |
|
|
|
latent_all_tmp[:, :args.pre_frames, :] = latent_last[:, -args.pre_frames:, :] |
|
|
|
net_out_val = model( |
|
in_audio = in_audio_tmp, |
|
in_word=None, |
|
mask=mask_val, |
|
in_motion = latent_all_tmp, |
|
in_id = in_id_tmp, |
|
use_attentions=True,) |
|
|
|
if args.cu != 0: |
|
rec_index_upper = log_softmax(net_out_val["cls_upper"]).reshape(-1, args.vae_codebook_size) |
|
_, rec_index_upper = torch.max(rec_index_upper.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2) |
|
|
|
else: |
|
_, rec_index_upper, _, _ = vq_model_upper.quantizer(net_out_val["rec_upper"]) |
|
|
|
if args.cl != 0: |
|
rec_index_lower = log_softmax(net_out_val["cls_lower"]).reshape(-1, args.vae_codebook_size) |
|
_, rec_index_lower = torch.max(rec_index_lower.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2) |
|
|
|
else: |
|
_, rec_index_lower, _, _ = vq_model_lower.quantizer(net_out_val["rec_lower"]) |
|
|
|
if args.ch != 0: |
|
rec_index_hands = log_softmax(net_out_val["cls_hands"]).reshape(-1, args.vae_codebook_size) |
|
_, rec_index_hands = torch.max(rec_index_hands.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2) |
|
|
|
else: |
|
_, rec_index_hands, _, _ = vq_model_hands.quantizer(net_out_val["rec_hands"]) |
|
|
|
if args.cf != 0: |
|
rec_index_face = log_softmax(net_out_val["cls_face"]).reshape(-1, args.vae_codebook_size) |
|
_, rec_index_face = torch.max(rec_index_face.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2) |
|
|
|
else: |
|
_, rec_index_face, _, _ = vq_model_face.quantizer(net_out_val["rec_face"]) |
|
|
|
|
|
if i == 0: |
|
rec_index_all_face.append(rec_index_face) |
|
rec_index_all_upper.append(rec_index_upper) |
|
rec_index_all_lower.append(rec_index_lower) |
|
rec_index_all_hands.append(rec_index_hands) |
|
else: |
|
rec_index_all_face.append(rec_index_face[:, args.pre_frames:]) |
|
rec_index_all_upper.append(rec_index_upper[:, args.pre_frames:]) |
|
rec_index_all_lower.append(rec_index_lower[:, args.pre_frames:]) |
|
rec_index_all_hands.append(rec_index_hands[:, args.pre_frames:]) |
|
|
|
if args.cu != 0: |
|
rec_upper_last = vq_model_upper.decode(rec_index_upper) |
|
else: |
|
rec_upper_last = vq_model_upper.decoder(rec_index_upper) |
|
if args.cl != 0: |
|
rec_lower_last = vq_model_lower.decode(rec_index_lower) |
|
else: |
|
rec_lower_last = vq_model_lower.decoder(rec_index_lower) |
|
if args.ch != 0: |
|
rec_hands_last = vq_model_hands.decode(rec_index_hands) |
|
else: |
|
rec_hands_last = vq_model_hands.decoder(rec_index_hands) |
|
|
|
|
|
|
|
|
|
|
|
rec_pose_legs = rec_lower_last[:, :, :54] |
|
bs, n = rec_pose_legs.shape[0], rec_pose_legs.shape[1] |
|
rec_pose_upper = rec_upper_last.reshape(bs, n, 13, 6) |
|
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper) |
|
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3) |
|
rec_pose_upper_recover = inverse_selection_tensor(rec_pose_upper, joint_mask_upper, bs*n) |
|
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6) |
|
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower) |
|
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3) |
|
rec_pose_lower_recover = inverse_selection_tensor(rec_pose_lower, joint_mask_lower, bs*n) |
|
rec_pose_hands = rec_hands_last.reshape(bs, n, 30, 6) |
|
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands) |
|
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3) |
|
rec_pose_hands_recover = inverse_selection_tensor(rec_pose_hands, joint_mask_hands, bs*n) |
|
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover |
|
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs, n, j, 3)) |
|
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6) |
|
rec_trans_v_s = rec_lower_last[:, :, 54:57] |
|
rec_x_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 0:1], 1/args.pose_fps, tar_trans[:, 0, 0:1]) |
|
rec_z_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 2:3], 1/args.pose_fps, tar_trans[:, 0, 2:3]) |
|
rec_y_trans = rec_trans_v_s[:,:,1:2] |
|
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1) |
|
latent_last = torch.cat([rec_pose, rec_trans, rec_lower_last[:, :, 57:61]], dim=-1) |
|
|
|
rec_index_face = torch.cat(rec_index_all_face, dim=1) |
|
rec_index_upper = torch.cat(rec_index_all_upper, dim=1) |
|
rec_index_lower = torch.cat(rec_index_all_lower, dim=1) |
|
rec_index_hands = torch.cat(rec_index_all_hands, dim=1) |
|
if args.cu != 0: |
|
rec_upper = vq_model_upper.decode(rec_index_upper) |
|
else: |
|
rec_upper = vq_model_upper.decoder(rec_index_upper) |
|
if args.cl != 0: |
|
rec_lower = vq_model_lower.decode(rec_index_lower) |
|
else: |
|
rec_lower = vq_model_lower.decoder(rec_index_lower) |
|
if args.ch != 0: |
|
rec_hands = vq_model_hands.decode(rec_index_hands) |
|
else: |
|
rec_hands = vq_model_hands.decoder(rec_index_hands) |
|
if args.cf != 0: |
|
rec_face = vq_model_face.decode(rec_index_face) |
|
else: |
|
rec_face = vq_model_face.decoder(rec_index_face) |
|
|
|
rec_exps = rec_face[:, :, 6:] |
|
rec_pose_jaw = rec_face[:, :, :6] |
|
rec_pose_legs = rec_lower[:, :, :54] |
|
bs, n = rec_pose_jaw.shape[0], rec_pose_jaw.shape[1] |
|
rec_pose_upper = rec_upper.reshape(bs, n, 13, 6) |
|
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper) |
|
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3) |
|
rec_pose_upper_recover = inverse_selection_tensor(rec_pose_upper, joint_mask_upper, bs*n) |
|
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6) |
|
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower) |
|
rec_lower2global = rc.matrix_to_rotation_6d(rec_pose_lower.clone()).reshape(bs, n, 9*6) |
|
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3) |
|
rec_pose_lower_recover = inverse_selection_tensor(rec_pose_lower, joint_mask_lower, bs*n) |
|
rec_pose_hands = rec_hands.reshape(bs, n, 30, 6) |
|
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands) |
|
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3) |
|
rec_pose_hands_recover = inverse_selection_tensor(rec_pose_hands, joint_mask_hands, bs*n) |
|
rec_pose_jaw = rec_pose_jaw.reshape(bs*n, 6) |
|
rec_pose_jaw = rc.rotation_6d_to_matrix(rec_pose_jaw) |
|
rec_pose_jaw = rc.matrix_to_axis_angle(rec_pose_jaw).reshape(bs*n, 1*3) |
|
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover |
|
rec_pose[:, 66:69] = rec_pose_jaw |
|
|
|
to_global = rec_lower |
|
to_global[:, :, 54:57] = 0.0 |
|
to_global[:, :, :54] = rec_lower2global |
|
rec_global = global_motion(to_global) |
|
|
|
rec_trans_v_s = rec_global["rec_pose"][:, :, 54:57] |
|
rec_x_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 0:1], 1/args.pose_fps, tar_trans[:, 0, 0:1]) |
|
rec_z_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 2:3], 1/args.pose_fps, tar_trans[:, 0, 2:3]) |
|
rec_y_trans = rec_trans_v_s[:,:,1:2] |
|
rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1) |
|
tar_pose = tar_pose[:, :n, :] |
|
tar_exps = tar_exps[:, :n, :] |
|
tar_trans = tar_trans[:, :n, :] |
|
tar_beta = tar_beta[:, :n, :] |
|
|
|
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs*n, j, 3)) |
|
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6) |
|
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs*n, j, 3)) |
|
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6) |
|
|
|
net_out = { |
|
'rec_pose': rec_pose, |
|
'rec_trans': rec_trans, |
|
'tar_pose': tar_pose, |
|
'tar_exps': tar_exps, |
|
'tar_beta': tar_beta, |
|
'tar_trans': tar_trans, |
|
'rec_exps': rec_exps, |
|
} |
|
|
|
|
|
tar_pose = net_out['tar_pose'] |
|
rec_pose = net_out['rec_pose'] |
|
tar_exps = net_out['tar_exps'] |
|
tar_beta = net_out['tar_beta'] |
|
rec_trans = net_out['rec_trans'] |
|
tar_trans = net_out['tar_trans'] |
|
rec_exps = net_out['rec_exps'] |
|
|
|
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], joints |
|
|
|
if (30/args.pose_fps) != 1: |
|
assert 30%args.pose_fps == 0 |
|
n *= int(30/args.pose_fps) |
|
tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/args.pose_fps, mode='linear').permute(0,2,1) |
|
rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/args.pose_fps, mode='linear').permute(0,2,1) |
|
|
|
|
|
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6)) |
|
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3) |
|
|
|
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6)) |
|
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3) |
|
|
|
return tar_pose, rec_pose, tar_exps, tar_beta, rec_trans, tar_trans, rec_exps, bs, n, j |
|
|
|
|
|
class BaseTrainer(object): |
|
def __init__(self, args, sp, ap, tp): |
|
hf_dir = "hf" |
|
if not os.path.exists(args.out_path + "custom/" + hf_dir + "/"): |
|
os.makedirs(args.out_path + "custom/" + hf_dir + "/") |
|
sf.write(args.out_path + "custom/" + hf_dir + "/tmp.wav", ap[1], ap[0]) |
|
self.audio_path = args.out_path + "custom/" + hf_dir + "/tmp.wav" |
|
audio, ssr = librosa.load(self.audio_path) |
|
ap = (ssr, audio) |
|
self.args = args |
|
self.rank = 0 |
|
|
|
|
|
self.checkpoint_path = args.out_path + "custom/" + hf_dir + "/" |
|
if self.rank == 0: |
|
self.test_data = __import__(f"dataloaders.{args.dataset}", fromlist=["something"]).CustomDataset(args, "test", smplx_path=sp, audio_path=ap, text_path=tp) |
|
self.test_loader = torch.utils.data.DataLoader( |
|
self.test_data, |
|
batch_size=1, |
|
shuffle=False, |
|
num_workers=args.loader_workers, |
|
drop_last=False, |
|
) |
|
logger.info(f"Init test dataloader success") |
|
model_module = __import__(f"models.{args.model}", fromlist=["something"]) |
|
|
|
if args.ddp: |
|
self.model = getattr(model_module, args.g_name)(args).to(self.rank) |
|
process_group = torch.distributed.new_group() |
|
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model, process_group) |
|
self.model = DDP(self.model, device_ids=[self.rank], output_device=self.rank, |
|
broadcast_buffers=False, find_unused_parameters=False) |
|
else: |
|
self.model = torch.nn.DataParallel(getattr(model_module, args.g_name)(args), args.gpus).cpu() |
|
|
|
if self.rank == 0: |
|
logger.info(self.model) |
|
logger.info(f"init {args.g_name} success") |
|
|
|
self.smplx = smplx.create( |
|
self.args.data_path_1+"smplx_models/", |
|
model_type='smplx', |
|
gender='NEUTRAL_2020', |
|
use_face_contour=False, |
|
num_betas=300, |
|
num_expression_coeffs=100, |
|
ext='npz', |
|
use_pca=False, |
|
) |
|
|
|
self.args = args |
|
self.joints = self.test_data.joints |
|
self.ori_joint_list = joints_list[self.args.ori_joints] |
|
self.tar_joint_list_face = joints_list["beat_smplx_face"] |
|
self.tar_joint_list_upper = joints_list["beat_smplx_upper"] |
|
self.tar_joint_list_hands = joints_list["beat_smplx_hands"] |
|
self.tar_joint_list_lower = joints_list["beat_smplx_lower"] |
|
|
|
self.joint_mask_face = np.zeros(len(list(self.ori_joint_list.keys()))*3) |
|
self.joints = 55 |
|
for joint_name in self.tar_joint_list_face: |
|
self.joint_mask_face[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 |
|
self.joint_mask_upper = np.zeros(len(list(self.ori_joint_list.keys()))*3) |
|
for joint_name in self.tar_joint_list_upper: |
|
self.joint_mask_upper[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 |
|
self.joint_mask_hands = np.zeros(len(list(self.ori_joint_list.keys()))*3) |
|
for joint_name in self.tar_joint_list_hands: |
|
self.joint_mask_hands[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 |
|
self.joint_mask_lower = np.zeros(len(list(self.ori_joint_list.keys()))*3) |
|
for joint_name in self.tar_joint_list_lower: |
|
self.joint_mask_lower[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 |
|
|
|
self.tracker = other_tools_hf.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'exp', 'lvd', 'mse', "cls", "rec_face", "latent", "cls_full", "cls_self", "cls_word", "latent_word","latent_self"], [False,True,True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False,False,False,False]) |
|
|
|
vq_model_module = __import__(f"models.motion_representation", fromlist=["something"]) |
|
self.args.vae_layer = 2 |
|
self.args.vae_length = 256 |
|
self.args.vae_test_dim = 106 |
|
self.vq_model_face = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu() |
|
|
|
|
|
self.args.vae_test_dim = 78 |
|
self.vq_model_upper = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu() |
|
|
|
self.args.vae_test_dim = 180 |
|
self.vq_model_hands = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu() |
|
|
|
self.args.vae_test_dim = 61 |
|
self.args.vae_layer = 4 |
|
self.vq_model_lower = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu() |
|
|
|
self.args.vae_test_dim = 61 |
|
self.args.vae_layer = 4 |
|
self.global_motion = getattr(vq_model_module, "VAEConvZero")(self.args).cpu() |
|
|
|
self.args.vae_test_dim = 330 |
|
self.args.vae_layer = 4 |
|
self.args.vae_length = 240 |
|
|
|
|
|
|
|
|
|
|
|
self.log_softmax = nn.LogSoftmax(dim=2) |
|
|
|
|
|
def inverse_selection(self, filtered_t, selection_array, n): |
|
original_shape_t = np.zeros((n, selection_array.size)) |
|
selected_indices = np.where(selection_array == 1)[0] |
|
for i in range(n): |
|
original_shape_t[i, selected_indices] = filtered_t[i] |
|
return original_shape_t |
|
|
|
def inverse_selection_tensor(self, filtered_t, selection_array, n): |
|
selection_array = torch.from_numpy(selection_array).cuda() |
|
original_shape_t = torch.zeros((n, 165)).cuda() |
|
selected_indices = torch.where(selection_array == 1)[0] |
|
for i in range(n): |
|
original_shape_t[i, selected_indices] = filtered_t[i] |
|
return original_shape_t |
|
|
|
|
|
def test_demo(self, epoch): |
|
''' |
|
input audio and text, output motion |
|
do not calculate loss and metric |
|
save video |
|
''' |
|
results_save_path = self.checkpoint_path + f"/{epoch}/" |
|
if os.path.exists(results_save_path): |
|
import shutil |
|
shutil.rmtree(results_save_path) |
|
os.makedirs(results_save_path) |
|
start_time = time.time() |
|
total_length = 0 |
|
test_seq_list = self.test_data.selected_file |
|
align = 0 |
|
latent_out = [] |
|
latent_ori = [] |
|
l2_all = 0 |
|
lvel = 0 |
|
for its, batch_data in enumerate(self.test_loader): |
|
tar_pose, rec_pose, tar_exps, tar_beta, rec_trans, tar_trans, rec_exps, bs, n, j = test_demo_gpu( |
|
self.model, self.vq_model_face, self.vq_model_upper, self.vq_model_hands, self.vq_model_lower, self.global_motion, self.smplx, |
|
batch_data, |
|
self.args, |
|
self.joints, self.joint_mask_upper, self.joint_mask_lower, self.joint_mask_hands, |
|
self.log_softmax, |
|
) |
|
|
|
tar_pose_np = tar_pose.detach().cpu().numpy() |
|
rec_pose_np = rec_pose.detach().cpu().numpy() |
|
rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3) |
|
rec_exp_np = rec_exps.detach().cpu().numpy().reshape(bs*n, 100) |
|
tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100) |
|
tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3) |
|
|
|
|
|
gt_npz = np.load(self.args.data_path+self.args.pose_rep +"/"+test_seq_list.iloc[its]['id']+".npz", allow_pickle=True) |
|
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz', |
|
betas=gt_npz["betas"], |
|
poses=tar_pose_np, |
|
expressions=tar_exp_np, |
|
trans=tar_trans_np, |
|
model='smplx2020', |
|
gender='neutral', |
|
mocap_frame_rate = 30, |
|
) |
|
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz', |
|
betas=gt_npz["betas"], |
|
poses=rec_pose_np, |
|
expressions=rec_exp_np, |
|
trans=rec_trans_np, |
|
model='smplx2020', |
|
gender='neutral', |
|
mocap_frame_rate = 30, |
|
) |
|
|
|
total_length += n |
|
render_vid_path = other_tools_hf.render_one_sequence_no_gt( |
|
results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz', |
|
|
|
results_save_path, |
|
self.audio_path, |
|
self.args.data_path_1+"smplx_models/", |
|
use_matplotlib = False, |
|
args = self.args, |
|
) |
|
result = gr.Video(value=render_vid_path, visible=True) |
|
end_time = time.time() - start_time |
|
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion") |
|
return result |
|
|
|
|
|
@logger.catch |
|
def emage(audio_path): |
|
smplx_path = None |
|
text_path = None |
|
rank = 0 |
|
world_size = 1 |
|
args = config.parse_args() |
|
|
|
if not sys.warnoptions: |
|
warnings.simplefilter("ignore") |
|
|
|
|
|
|
|
other_tools_hf.set_random_seed(args) |
|
other_tools_hf.print_exp_info(args) |
|
|
|
|
|
trainer = BaseTrainer(args, sp = smplx_path, ap = audio_path, tp = text_path) |
|
result = trainer.test_demo(999) |
|
return result |
|
|
|
examples = [ |
|
["./EMAGE/test_sequences/wave16k/2_scott_0_1_1.wav"], |
|
["./EMAGE/test_sequences/wave16k/2_scott_0_2_2.wav"], |
|
["./EMAGE/test_sequences/wave16k/2_scott_0_3_3.wav"], |
|
] |
|
|
|
demo = gr.Interface( |
|
emage, |
|
inputs=[ |
|
|
|
gr.Audio(), |
|
|
|
], |
|
outputs=gr.Video(format="mp4", visible=True), |
|
title='\ |
|
<div align="center">\ |
|
EMAGE: Towards Unified Holistic Co-Speech Gesture Generation via Expressive Masked Audio Gesture Modeling <br/>\ |
|
CVPR 2024 <br/>\ |
|
</div>', |
|
description='\ |
|
<div align="center">\ |
|
Haiyang Liu1*, Zihao Zhu2*, Giorgio Becherini3, Yichen Peng4, Mingyang Su5,<br/>\ |
|
You Zhou, Xuefei Zhe, Naoya Iwamoto, Bo Zheng, Michael J. Black3 <br/>\ |
|
(*Equal Contribution) <br/>\ |
|
1The University of Tokyo, 2Keio University, 4Japan Advanced Institute of Science and Technology, <br/>\ |
|
3Max Planck Institute for Intelligent Systems, 5Tsinghua University <br/>\ |
|
</div>\ |
|
', |
|
article="\ |
|
Due to the limited resources in this space, we process the first 60s of your uploaded audio. <br/>\ |
|
Try to develop this space locally for longer motion generation, e.g., 60s. <br/>\ |
|
Relevant links: [Project Page (https://pantomatrix.github.io/EMAGE/)\ |
|
", |
|
examples=examples, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
os.environ["MASTER_ADDR"]='127.0.0.1' |
|
os.environ["MASTER_PORT"]='8675' |
|
|
|
demo.launch(share=True) |