|
import os |
|
import pickle |
|
import math |
|
import shutil |
|
import numpy as np |
|
import lmdb as lmdb |
|
import textgrid as tg |
|
import pandas as pd |
|
import torch |
|
import glob |
|
import json |
|
from termcolor import colored |
|
from loguru import logger |
|
from collections import defaultdict |
|
from torch.utils.data import Dataset |
|
import torch.distributed as dist |
|
import pyarrow |
|
import librosa |
|
import smplx |
|
|
|
from .build_vocab import Vocab |
|
from .utils.audio_features import Wav2Vec2Model |
|
from .data_tools import joints_list |
|
from .utils import rotation_conversions as rc |
|
from .utils import other_tools |
|
|
|
class CustomDataset(Dataset): |
|
def __init__(self, args, loader_type, augmentation=None, kwargs=None, build_cache=True): |
|
self.args = args |
|
self.loader_type = loader_type |
|
|
|
self.rank = dist.get_rank() |
|
self.ori_stride = self.args.stride |
|
self.ori_length = self.args.pose_length |
|
self.alignment = [0,0] |
|
|
|
self.ori_joint_list = joints_list[self.args.ori_joints] |
|
self.tar_joint_list = joints_list[self.args.tar_joints] |
|
if 'smplx' in self.args.pose_rep: |
|
self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3) |
|
self.joints = len(list(self.tar_joint_list.keys())) |
|
for joint_name in self.tar_joint_list: |
|
self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 |
|
else: |
|
self.joints = len(list(self.ori_joint_list.keys()))+1 |
|
self.joint_mask = np.zeros(self.joints*3) |
|
for joint_name in self.tar_joint_list: |
|
if joint_name == "Hips": |
|
self.joint_mask[3:6] = 1 |
|
else: |
|
self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 |
|
|
|
|
|
split_rule = pd.read_csv(args.data_path+"train_test_split.csv") |
|
self.selected_file = split_rule.loc[(split_rule['type'] == loader_type) & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))] |
|
if args.additional_data and loader_type == 'train': |
|
split_b = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))] |
|
|
|
self.selected_file = pd.concat([self.selected_file, split_b]) |
|
if self.selected_file.empty: |
|
logger.warning(f"{loader_type} is empty for speaker {self.args.training_speakers}, use train set 0-8 instead") |
|
self.selected_file = split_rule.loc[(split_rule['type'] == 'train') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))] |
|
self.selected_file = self.selected_file.iloc[0:8] |
|
self.data_dir = args.data_path |
|
|
|
if loader_type == "test": |
|
self.args.multi_length_training = [1.0] |
|
self.max_length = int(args.pose_length * self.args.multi_length_training[-1]) |
|
self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr) |
|
if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr: |
|
self.max_audio_pre_len = self.args.test_length*self.args.audio_sr |
|
|
|
if args.word_rep is not None: |
|
with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f: |
|
self.lang_model = pickle.load(f) |
|
|
|
preloaded_dir = self.args.root_path + self.args.cache_path + loader_type + f"/{args.pose_rep}_cache" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.args.beat_align: |
|
if not os.path.exists(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy"): |
|
self.calculate_mean_velocity(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy") |
|
self.avg_vel = np.load(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy") |
|
|
|
if build_cache and self.rank == 0: |
|
self.build_cache(preloaded_dir) |
|
self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False) |
|
with self.lmdb_env.begin() as txn: |
|
self.n_samples = txn.stat()["entries"] |
|
|
|
|
|
def calculate_mean_velocity(self, save_path): |
|
self.smplx = smplx.create( |
|
self.args.data_path_1+"smplx_models/", |
|
model_type='smplx', |
|
gender='NEUTRAL_2020', |
|
use_face_contour=False, |
|
num_betas=300, |
|
num_expression_coeffs=100, |
|
ext='npz', |
|
use_pca=False, |
|
).cuda().eval() |
|
dir_p = self.data_dir + self.args.pose_rep + "/" |
|
all_list = [] |
|
from tqdm import tqdm |
|
for tar in tqdm(os.listdir(dir_p)): |
|
if tar.endswith(".npz"): |
|
m_data = np.load(dir_p+tar, allow_pickle=True) |
|
betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"] |
|
n, c = poses.shape[0], poses.shape[1] |
|
betas = betas.reshape(1, 300) |
|
betas = np.tile(betas, (n, 1)) |
|
betas = torch.from_numpy(betas).cuda().float() |
|
poses = torch.from_numpy(poses.reshape(n, c)).cuda().float() |
|
exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float() |
|
trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float() |
|
max_length = 128 |
|
s, r = n//max_length, n%max_length |
|
|
|
all_tensor = [] |
|
for i in range(s): |
|
with torch.no_grad(): |
|
joints = self.smplx( |
|
betas=betas[i*max_length:(i+1)*max_length], |
|
transl=trans[i*max_length:(i+1)*max_length], |
|
expression=exps[i*max_length:(i+1)*max_length], |
|
jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69], |
|
global_orient=poses[i*max_length:(i+1)*max_length,:3], |
|
body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3], |
|
left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3], |
|
right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3], |
|
return_verts=True, |
|
return_joints=True, |
|
leye_pose=poses[i*max_length:(i+1)*max_length, 69:72], |
|
reye_pose=poses[i*max_length:(i+1)*max_length, 72:75], |
|
)['joints'][:, :55, :].reshape(max_length, 55*3) |
|
all_tensor.append(joints) |
|
if r != 0: |
|
with torch.no_grad(): |
|
joints = self.smplx( |
|
betas=betas[s*max_length:s*max_length+r], |
|
transl=trans[s*max_length:s*max_length+r], |
|
expression=exps[s*max_length:s*max_length+r], |
|
jaw_pose=poses[s*max_length:s*max_length+r, 66:69], |
|
global_orient=poses[s*max_length:s*max_length+r,:3], |
|
body_pose=poses[s*max_length:s*max_length+r,3:21*3+3], |
|
left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3], |
|
right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3], |
|
return_verts=True, |
|
return_joints=True, |
|
leye_pose=poses[s*max_length:s*max_length+r, 69:72], |
|
reye_pose=poses[s*max_length:s*max_length+r, 72:75], |
|
)['joints'][:, :55, :].reshape(r, 55*3) |
|
all_tensor.append(joints) |
|
joints = torch.cat(all_tensor, axis=0) |
|
joints = joints.permute(1, 0) |
|
dt = 1/30 |
|
|
|
init_vel = (joints[:, 1:2] - joints[:, :1]) / dt |
|
|
|
middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt) |
|
|
|
final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt |
|
|
|
vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1).permute(1, 0).reshape(n, 55, 3) |
|
|
|
|
|
vel_seq_np = vel_seq.cpu().numpy() |
|
vel_joints_np = np.linalg.norm(vel_seq_np, axis=2) |
|
all_list.append(vel_joints_np) |
|
avg_vel = np.mean(np.concatenate(all_list, axis=0),axis=0) |
|
np.save(save_path, avg_vel) |
|
|
|
|
|
def build_cache(self, preloaded_dir): |
|
logger.info(f"Audio bit rate: {self.args.audio_fps}") |
|
logger.info("Reading data '{}'...".format(self.data_dir)) |
|
logger.info("Creating the dataset cache...") |
|
if self.args.new_cache: |
|
if os.path.exists(preloaded_dir): |
|
shutil.rmtree(preloaded_dir) |
|
if os.path.exists(preloaded_dir): |
|
logger.info("Found the cache {}".format(preloaded_dir)) |
|
elif self.loader_type == "test": |
|
self.cache_generation( |
|
preloaded_dir, True, |
|
0, 0, |
|
is_test=True) |
|
else: |
|
self.cache_generation( |
|
preloaded_dir, self.args.disable_filtering, |
|
self.args.clean_first_seconds, self.args.clean_final_seconds, |
|
is_test=False) |
|
|
|
def __len__(self): |
|
return self.n_samples |
|
|
|
|
|
def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds, clean_final_seconds, is_test=False): |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.n_out_samples = 0 |
|
|
|
if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir) |
|
dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 50)) |
|
n_filtered_out = defaultdict(int) |
|
|
|
for index, file_name in self.selected_file.iterrows(): |
|
f_name = file_name["id"] |
|
ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh" |
|
pose_file = self.data_dir + self.args.pose_rep + "/" + f_name + ext |
|
pose_each_file = [] |
|
trans_each_file = [] |
|
shape_each_file = [] |
|
audio_each_file = [] |
|
facial_each_file = [] |
|
word_each_file = [] |
|
emo_each_file = [] |
|
sem_each_file = [] |
|
vid_each_file = [] |
|
id_pose = f_name |
|
|
|
logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue")) |
|
if "smplx" in self.args.pose_rep: |
|
pose_data = np.load(pose_file, allow_pickle=True) |
|
assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30' |
|
stride = int(30/self.args.pose_fps) |
|
pose_each_file = pose_data["poses"][::stride] * self.joint_mask |
|
pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)] |
|
|
|
trans_each_file = pose_data["trans"][::stride] |
|
shape_each_file = np.repeat(pose_data["betas"].reshape(1, 300), pose_each_file.shape[0], axis=0) |
|
if self.args.facial_rep is not None: |
|
logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #") |
|
facial_each_file = pose_data["expressions"][::stride] |
|
if self.args.facial_norm: |
|
facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial |
|
|
|
else: |
|
assert 120%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120' |
|
stride = int(120/self.args.pose_fps) |
|
with open(pose_file, "r") as pose_data: |
|
for j, line in enumerate(pose_data.readlines()): |
|
if j < 431: continue |
|
if j%stride != 0:continue |
|
data = np.fromstring(line, dtype=float, sep=" ") |
|
rot_data = rc.euler_angles_to_matrix(torch.from_numpy(np.deg2rad(data)).reshape(-1, self.joints,3), "XYZ") |
|
rot_data = rc.matrix_to_axis_angle(rot_data).reshape(-1, self.joints*3) |
|
rot_data = rot_data.numpy() * self.joint_mask |
|
|
|
pose_each_file.append(rot_data) |
|
trans_each_file.append(data[:3]) |
|
|
|
pose_each_file = np.array(pose_each_file) |
|
|
|
trans_each_file = np.array(trans_each_file) |
|
shape_each_file = np.repeat(np.array(-1).reshape(1, 1), pose_each_file.shape[0], axis=0) |
|
if self.args.facial_rep is not None: |
|
logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #") |
|
facial_file = pose_file.replace(self.args.pose_rep, self.args.facial_rep).replace("bvh", "json") |
|
assert 60%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120' |
|
stride = int(60/self.args.pose_fps) |
|
if not os.path.exists(facial_file): |
|
logger.warning(f"# ---- file not found for Facial {id_pose}, skip all files with the same id ---- #") |
|
self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index) |
|
continue |
|
with open(facial_file, 'r') as facial_data_file: |
|
facial_data = json.load(facial_data_file) |
|
for j, frame_data in enumerate(facial_data['frames']): |
|
if j%stride != 0:continue |
|
facial_each_file.append(frame_data['weights']) |
|
facial_each_file = np.array(facial_each_file) |
|
if self.args.facial_norm: |
|
facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial |
|
|
|
if self.args.id_rep is not None: |
|
vid_each_file = np.repeat(np.array(int(f_name.split("_")[0])-1).reshape(1, 1), pose_each_file.shape[0], axis=0) |
|
|
|
if self.args.audio_rep is not None: |
|
logger.info(f"# ---- Building cache for Audio {id_pose} and Pose {id_pose} ---- #") |
|
audio_file = pose_file.replace(self.args.pose_rep, 'wave16k').replace(ext, ".wav") |
|
if not os.path.exists(audio_file): |
|
logger.warning(f"# ---- file not found for Audio {id_pose}, skip all files with the same id ---- #") |
|
self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index) |
|
continue |
|
audio_each_file, sr = librosa.load(audio_file) |
|
audio_each_file = librosa.resample(audio_each_file, orig_sr=sr, target_sr=self.args.audio_sr) |
|
if self.args.audio_rep == "onset+amplitude": |
|
from numpy.lib import stride_tricks |
|
frame_length = 1024 |
|
|
|
shape = (audio_each_file.shape[-1] - frame_length + 1, frame_length) |
|
strides = (audio_each_file.strides[-1], audio_each_file.strides[-1]) |
|
rolling_view = stride_tricks.as_strided(audio_each_file, shape=shape, strides=strides) |
|
amplitude_envelope = np.max(np.abs(rolling_view), axis=1) |
|
|
|
amplitude_envelope = np.pad(amplitude_envelope, (0, frame_length-1), mode='constant', constant_values=amplitude_envelope[-1]) |
|
audio_onset_f = librosa.onset.onset_detect(y=audio_each_file, sr=self.args.audio_sr, units='frames') |
|
onset_array = np.zeros(len(audio_each_file), dtype=float) |
|
onset_array[audio_onset_f] = 1.0 |
|
|
|
audio_each_file = np.concatenate([amplitude_envelope.reshape(-1, 1), onset_array.reshape(-1, 1)], axis=1) |
|
elif self.args.audio_rep == "mfcc": |
|
audio_each_file = librosa.feature.melspectrogram(y=audio_each_file, sr=self.args.audio_sr, n_mels=128, hop_length=int(self.args.audio_sr/self.args.audio_fps)) |
|
audio_each_file = audio_each_file.transpose(1, 0) |
|
|
|
if self.args.audio_norm and self.args.audio_rep == "wave16k": |
|
audio_each_file = (audio_each_file - self.mean_audio) / self.std_audio |
|
|
|
time_offset = 0 |
|
if self.args.word_rep is not None: |
|
logger.info(f"# ---- Building cache for Word {id_pose} and Pose {id_pose} ---- #") |
|
word_file = f"{self.data_dir}{self.args.word_rep}/{id_pose}.TextGrid" |
|
if not os.path.exists(word_file): |
|
logger.warning(f"# ---- file not found for Word {id_pose}, skip all files with the same id ---- #") |
|
self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index) |
|
continue |
|
tgrid = tg.TextGrid.fromFile(word_file) |
|
if self.args.t_pre_encoder == "bert": |
|
from transformers import AutoTokenizer, BertModel |
|
tokenizer = AutoTokenizer.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True) |
|
model = BertModel.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True).eval() |
|
list_word = [] |
|
all_hidden = [] |
|
max_len = 400 |
|
last = 0 |
|
word_token_mapping = [] |
|
first = True |
|
for i, word in enumerate(tgrid[0]): |
|
last = i |
|
if (i%max_len != 0) or (i==0): |
|
if word.mark == "": |
|
list_word.append(".") |
|
else: |
|
list_word.append(word.mark) |
|
else: |
|
max_counter = max_len |
|
str_word = ' '.join(map(str, list_word)) |
|
if first: |
|
global_len = 0 |
|
end = -1 |
|
offset_word = [] |
|
for k, wordvalue in enumerate(list_word): |
|
start = end+1 |
|
end = start+len(wordvalue) |
|
offset_word.append((start, end)) |
|
|
|
token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping'] |
|
|
|
for start, end in offset_word: |
|
sub_mapping = [] |
|
for i, (start_t, end_t) in enumerate(token_scan[1:-1]): |
|
if int(start) <= int(start_t) and int(end_t) <= int(end): |
|
|
|
sub_mapping.append(i+global_len) |
|
word_token_mapping.append(sub_mapping) |
|
|
|
global_len = word_token_mapping[-1][-1] + 1 |
|
list_word = [] |
|
if word.mark == "": |
|
list_word.append(".") |
|
else: |
|
list_word.append(word.mark) |
|
|
|
with torch.no_grad(): |
|
inputs = tokenizer(str_word, return_tensors="pt") |
|
outputs = model(**inputs) |
|
last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :] |
|
all_hidden.append(last_hidden_states) |
|
|
|
|
|
if list_word == []: |
|
pass |
|
else: |
|
if first: |
|
global_len = 0 |
|
str_word = ' '.join(map(str, list_word)) |
|
end = -1 |
|
offset_word = [] |
|
for k, wordvalue in enumerate(list_word): |
|
start = end+1 |
|
end = start+len(wordvalue) |
|
offset_word.append((start, end)) |
|
|
|
token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping'] |
|
|
|
for start, end in offset_word: |
|
sub_mapping = [] |
|
for i, (start_t, end_t) in enumerate(token_scan[1:-1]): |
|
if int(start) <= int(start_t) and int(end_t) <= int(end): |
|
sub_mapping.append(i+global_len) |
|
|
|
word_token_mapping.append(sub_mapping) |
|
|
|
with torch.no_grad(): |
|
inputs = tokenizer(str_word, return_tensors="pt") |
|
outputs = model(**inputs) |
|
last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :] |
|
all_hidden.append(last_hidden_states) |
|
last_hidden_states = np.concatenate(all_hidden, axis=0) |
|
|
|
for i in range(pose_each_file.shape[0]): |
|
found_flag = False |
|
current_time = i/self.args.pose_fps + time_offset |
|
j_last = 0 |
|
for j, word in enumerate(tgrid[0]): |
|
word_n, word_s, word_e = word.mark, word.minTime, word.maxTime |
|
if word_s<=current_time and current_time<=word_e: |
|
if self.args.word_cache and self.args.t_pre_encoder == 'bert': |
|
mapping_index = word_token_mapping[j] |
|
|
|
s_t = np.linspace(word_s, word_e, len(mapping_index)+1) |
|
|
|
for tt, t_sep in enumerate(s_t[1:]): |
|
if current_time <= t_sep: |
|
|
|
word_each_file.append(last_hidden_states[mapping_index[tt]]) |
|
break |
|
else: |
|
if word_n == " ": |
|
word_each_file.append(self.lang_model.PAD_token) |
|
else: |
|
word_each_file.append(self.lang_model.get_word_index(word_n)) |
|
found_flag = True |
|
j_last = j |
|
break |
|
else: continue |
|
if not found_flag: |
|
if self.args.word_cache and self.args.t_pre_encoder == 'bert': |
|
word_each_file.append(last_hidden_states[j_last]) |
|
else: |
|
word_each_file.append(self.lang_model.UNK_token) |
|
word_each_file = np.array(word_each_file) |
|
|
|
|
|
if self.args.emo_rep is not None: |
|
logger.info(f"# ---- Building cache for Emo {id_pose} and Pose {id_pose} ---- #") |
|
rtype, start = int(id_pose.split('_')[3]), int(id_pose.split('_')[3]) |
|
if rtype == 0 or rtype == 2 or rtype == 4 or rtype == 6: |
|
if start >= 1 and start <= 64: |
|
score = 0 |
|
elif start >= 65 and start <= 72: |
|
score = 1 |
|
elif start >= 73 and start <= 80: |
|
score = 2 |
|
elif start >= 81 and start <= 86: |
|
score = 3 |
|
elif start >= 87 and start <= 94: |
|
score = 4 |
|
elif start >= 95 and start <= 102: |
|
score = 5 |
|
elif start >= 103 and start <= 110: |
|
score = 6 |
|
elif start >= 111 and start <= 118: |
|
score = 7 |
|
else: pass |
|
else: |
|
|
|
score = 0 |
|
emo_each_file = np.repeat(np.array(score).reshape(1, 1), pose_each_file.shape[0], axis=0) |
|
|
|
|
|
if self.args.sem_rep is not None: |
|
logger.info(f"# ---- Building cache for Sem {id_pose} and Pose {id_pose} ---- #") |
|
sem_file = f"{self.data_dir}{self.args.sem_rep}/{id_pose}.txt" |
|
sem_all = pd.read_csv(sem_file, |
|
sep='\t', |
|
names=["name", "start_time", "end_time", "duration", "score", "keywords"]) |
|
|
|
for i in range(pose_each_file.shape[0]): |
|
found_flag = False |
|
for j, (start, end, score) in enumerate(zip(sem_all['start_time'],sem_all['end_time'], sem_all['score'])): |
|
current_time = i/self.args.pose_fps + time_offset |
|
if start<=current_time and current_time<=end: |
|
sem_each_file.append(score) |
|
found_flag=True |
|
break |
|
else: continue |
|
if not found_flag: sem_each_file.append(0.) |
|
sem_each_file = np.array(sem_each_file) |
|
|
|
|
|
filtered_result = self._sample_from_clip( |
|
dst_lmdb_env, |
|
audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file, |
|
vid_each_file, emo_each_file, sem_each_file, |
|
disable_filtering, clean_first_seconds, clean_final_seconds, is_test, |
|
) |
|
for type in filtered_result.keys(): |
|
n_filtered_out[type] += filtered_result[type] |
|
|
|
with dst_lmdb_env.begin() as txn: |
|
logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan")) |
|
n_total_filtered = 0 |
|
for type, n_filtered in n_filtered_out.items(): |
|
logger.info("{}: {}".format(type, n_filtered)) |
|
n_total_filtered += n_filtered |
|
logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format( |
|
n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan")) |
|
dst_lmdb_env.sync() |
|
dst_lmdb_env.close() |
|
|
|
def _sample_from_clip( |
|
self, dst_lmdb_env, audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file, |
|
vid_each_file, emo_each_file, sem_each_file, |
|
disable_filtering, clean_first_seconds, clean_final_seconds, is_test, |
|
): |
|
""" |
|
for data cleaning, we ignore the data for first and final n s |
|
for test, we return all data |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps |
|
|
|
if audio_each_file != []: |
|
if self.args.audio_rep != "wave16k": |
|
round_seconds_audio = len(audio_each_file) // self.args.audio_fps |
|
elif self.args.audio_rep == "mfcc": |
|
round_seconds_audio = audio_each_file.shape[0] // self.args.audio_fps |
|
else: |
|
round_seconds_audio = audio_each_file.shape[0] // self.args.audio_sr |
|
if facial_each_file != []: |
|
round_seconds_facial = facial_each_file.shape[0] // self.args.pose_fps |
|
logger.info(f"audio: {round_seconds_audio}s, pose: {round_seconds_skeleton}s, facial: {round_seconds_facial}s") |
|
round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton, round_seconds_facial) |
|
max_round = max(round_seconds_audio, round_seconds_skeleton, round_seconds_facial) |
|
if round_seconds_skeleton != max_round: |
|
logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s") |
|
else: |
|
logger.info(f"pose: {round_seconds_skeleton}s, audio: {round_seconds_audio}s") |
|
round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton) |
|
max_round = max(round_seconds_audio, round_seconds_skeleton) |
|
if round_seconds_skeleton != max_round: |
|
logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s") |
|
|
|
clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds |
|
clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps |
|
clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps |
|
|
|
|
|
for ratio in self.args.multi_length_training: |
|
if is_test: |
|
cut_length = clip_e_f_pose - clip_s_f_pose |
|
self.args.stride = cut_length |
|
self.max_length = cut_length |
|
else: |
|
self.args.stride = int(ratio*self.ori_stride) |
|
cut_length = int(self.ori_length*ratio) |
|
|
|
num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1 |
|
logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}") |
|
logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}") |
|
|
|
if audio_each_file != []: |
|
audio_short_length = math.floor(cut_length / self.args.pose_fps * self.args.audio_fps) |
|
""" |
|
for audio sr = 16000, fps = 15, pose_length = 34, |
|
audio short length = 36266.7 -> 36266 |
|
this error is fine. |
|
""" |
|
logger.info(f"audio from frame {clip_s_f_audio} to {clip_e_f_audio}, length {audio_short_length}") |
|
|
|
n_filtered_out = defaultdict(int) |
|
sample_pose_list = [] |
|
sample_audio_list = [] |
|
sample_facial_list = [] |
|
sample_shape_list = [] |
|
sample_word_list = [] |
|
sample_emo_list = [] |
|
sample_sem_list = [] |
|
sample_vid_list = [] |
|
sample_trans_list = [] |
|
|
|
for i in range(num_subdivision): |
|
start_idx = clip_s_f_pose + i * self.args.stride |
|
fin_idx = start_idx + cut_length |
|
sample_pose = pose_each_file[start_idx:fin_idx] |
|
sample_trans = trans_each_file[start_idx:fin_idx] |
|
sample_shape = shape_each_file[start_idx:fin_idx] |
|
|
|
if self.args.audio_rep is not None: |
|
audio_start = clip_s_f_audio + math.floor(i * self.args.stride * self.args.audio_fps / self.args.pose_fps) |
|
audio_end = audio_start + audio_short_length |
|
sample_audio = audio_each_file[audio_start:audio_end] |
|
else: |
|
sample_audio = np.array([-1]) |
|
sample_facial = facial_each_file[start_idx:fin_idx] if self.args.facial_rep is not None else np.array([-1]) |
|
sample_word = word_each_file[start_idx:fin_idx] if self.args.word_rep is not None else np.array([-1]) |
|
sample_emo = emo_each_file[start_idx:fin_idx] if self.args.emo_rep is not None else np.array([-1]) |
|
sample_sem = sem_each_file[start_idx:fin_idx] if self.args.sem_rep is not None else np.array([-1]) |
|
sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1]) |
|
|
|
if sample_pose.any() != None: |
|
|
|
sample_pose, filtering_message = MotionPreprocessor(sample_pose).get() |
|
is_correct_motion = (sample_pose != []) |
|
if is_correct_motion or disable_filtering: |
|
sample_pose_list.append(sample_pose) |
|
sample_audio_list.append(sample_audio) |
|
sample_facial_list.append(sample_facial) |
|
sample_shape_list.append(sample_shape) |
|
sample_word_list.append(sample_word) |
|
sample_vid_list.append(sample_vid) |
|
sample_emo_list.append(sample_emo) |
|
sample_sem_list.append(sample_sem) |
|
sample_trans_list.append(sample_trans) |
|
else: |
|
n_filtered_out[filtering_message] += 1 |
|
|
|
if len(sample_pose_list) > 0: |
|
with dst_lmdb_env.begin(write=True) as txn: |
|
for pose, audio, facial, shape, word, vid, emo, sem, trans in zip( |
|
sample_pose_list, |
|
sample_audio_list, |
|
sample_facial_list, |
|
sample_shape_list, |
|
sample_word_list, |
|
sample_vid_list, |
|
sample_emo_list, |
|
sample_sem_list, |
|
sample_trans_list,): |
|
k = "{:005}".format(self.n_out_samples).encode("ascii") |
|
v = [pose, audio, facial, shape, word, emo, sem, vid, trans] |
|
v = pyarrow.serialize(v).to_buffer() |
|
txn.put(k, v) |
|
self.n_out_samples += 1 |
|
return n_filtered_out |
|
|
|
def __getitem__(self, idx): |
|
with self.lmdb_env.begin(write=False) as txn: |
|
key = "{:005}".format(idx).encode("ascii") |
|
sample = txn.get(key) |
|
sample = pyarrow.deserialize(sample) |
|
tar_pose, in_audio, in_facial, in_shape, in_word, emo, sem, vid, trans = sample |
|
|
|
|
|
emo = torch.from_numpy(emo).int() |
|
sem = torch.from_numpy(sem).float() |
|
in_audio = torch.from_numpy(in_audio).float() |
|
in_word = torch.from_numpy(in_word).float() if self.args.word_cache else torch.from_numpy(in_word).int() |
|
if self.loader_type == "test": |
|
tar_pose = torch.from_numpy(tar_pose).float() |
|
trans = torch.from_numpy(trans).float() |
|
in_facial = torch.from_numpy(in_facial).float() |
|
vid = torch.from_numpy(vid).float() |
|
in_shape = torch.from_numpy(in_shape).float() |
|
else: |
|
in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float() |
|
trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float() |
|
vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float() |
|
tar_pose = torch.from_numpy(tar_pose).reshape((tar_pose.shape[0], -1)).float() |
|
in_facial = torch.from_numpy(in_facial).reshape((in_facial.shape[0], -1)).float() |
|
return {"pose":tar_pose, "audio":in_audio, "facial":in_facial, "beta": in_shape, "word":in_word, "id":vid, "emo":emo, "sem":sem, "trans":trans} |
|
|
|
|
|
class MotionPreprocessor: |
|
def __init__(self, skeletons): |
|
self.skeletons = skeletons |
|
|
|
self.filtering_message = "PASS" |
|
|
|
def get(self): |
|
assert (self.skeletons is not None) |
|
|
|
|
|
if self.skeletons != []: |
|
if self.check_pose_diff(): |
|
self.skeletons = [] |
|
self.filtering_message = "pose" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return self.skeletons, self.filtering_message |
|
|
|
def check_static_motion(self, verbose=True): |
|
def get_variance(skeleton, joint_idx): |
|
wrist_pos = skeleton[:, joint_idx] |
|
variance = np.sum(np.var(wrist_pos, axis=0)) |
|
return variance |
|
|
|
left_arm_var = get_variance(self.skeletons, 6) |
|
right_arm_var = get_variance(self.skeletons, 9) |
|
|
|
th = 0.0014 |
|
|
|
if left_arm_var < th and right_arm_var < th: |
|
if verbose: |
|
print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var)) |
|
return True |
|
else: |
|
if verbose: |
|
print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var)) |
|
return False |
|
|
|
|
|
def check_pose_diff(self, verbose=False): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return False |
|
|
|
|
|
def check_spine_angle(self, verbose=True): |
|
def angle_between(v1, v2): |
|
v1_u = v1 / np.linalg.norm(v1) |
|
v2_u = v2 / np.linalg.norm(v2) |
|
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) |
|
|
|
angles = [] |
|
for i in range(self.skeletons.shape[0]): |
|
spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0] |
|
angle = angle_between(spine_vec, [0, -1, 0]) |
|
angles.append(angle) |
|
|
|
if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20: |
|
|
|
if verbose: |
|
print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles))) |
|
return True |
|
else: |
|
if verbose: |
|
print("pass - check_spine_angle {:.5f}".format(max(angles))) |
|
return False |