|
import os |
|
import shlex |
|
import subprocess |
|
|
|
subprocess.run(shlex.split("pip install flash-attn --no-build-isolation"), env=os.environ | {"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, check=True) |
|
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.4/mamba_ssm-2.2.4+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"), check=True) |
|
subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.5.0.post8/causal_conv1d-1.5.0.post8+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"), check=True) |
|
|
|
import spaces |
|
import torch |
|
import torchaudio |
|
import gradio as gr |
|
from os import getenv |
|
|
|
from zonos.model import Zonos |
|
from zonos.conditioning import make_cond_dict, supported_language_codes |
|
|
|
device = "cuda" |
|
MODEL_NAMES = ["Zyphra/Zonos-v0.1-transformer", "Zyphra/Zonos-v0.1-hybrid"] |
|
MODELS = {name: Zonos.from_pretrained(name, device=device) for name in MODEL_NAMES} |
|
for model in MODELS.values(): |
|
model.requires_grad_(False).eval() |
|
|
|
|
|
def update_ui(model_choice): |
|
""" |
|
Dynamically show/hide UI elements based on the model's conditioners. |
|
We do NOT display 'language_id' or 'ctc_loss' even if they exist in the model. |
|
""" |
|
model = MODELS[model_choice] |
|
cond_names = [c.name for c in model.prefix_conditioner.conditioners] |
|
print("Conditioners in this model:", cond_names) |
|
|
|
text_update = gr.update(visible=("espeak" in cond_names)) |
|
language_update = gr.update(visible=("espeak" in cond_names)) |
|
speaker_audio_update = gr.update(visible=("speaker" in cond_names)) |
|
prefix_audio_update = gr.update(visible=True) |
|
emotion1_update = gr.update(visible=("emotion" in cond_names)) |
|
emotion2_update = gr.update(visible=("emotion" in cond_names)) |
|
emotion3_update = gr.update(visible=("emotion" in cond_names)) |
|
emotion4_update = gr.update(visible=("emotion" in cond_names)) |
|
emotion5_update = gr.update(visible=("emotion" in cond_names)) |
|
emotion6_update = gr.update(visible=("emotion" in cond_names)) |
|
emotion7_update = gr.update(visible=("emotion" in cond_names)) |
|
emotion8_update = gr.update(visible=("emotion" in cond_names)) |
|
vq_single_slider_update = gr.update(visible=("vqscore_8" in cond_names)) |
|
fmax_slider_update = gr.update(visible=("fmax" in cond_names)) |
|
pitch_std_slider_update = gr.update(visible=("pitch_std" in cond_names)) |
|
speaking_rate_slider_update = gr.update(visible=("speaking_rate" in cond_names)) |
|
dnsmos_slider_update = gr.update(visible=("dnsmos_ovrl" in cond_names)) |
|
speaker_noised_checkbox_update = gr.update(visible=("speaker_noised" in cond_names)) |
|
unconditional_keys_update = gr.update( |
|
choices=[name for name in cond_names if name not in ("espeak", "language_id")] |
|
) |
|
|
|
return ( |
|
text_update, |
|
language_update, |
|
speaker_audio_update, |
|
prefix_audio_update, |
|
emotion1_update, |
|
emotion2_update, |
|
emotion3_update, |
|
emotion4_update, |
|
emotion5_update, |
|
emotion6_update, |
|
emotion7_update, |
|
emotion8_update, |
|
vq_single_slider_update, |
|
fmax_slider_update, |
|
pitch_std_slider_update, |
|
speaking_rate_slider_update, |
|
dnsmos_slider_update, |
|
speaker_noised_checkbox_update, |
|
unconditional_keys_update, |
|
) |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def generate_audio( |
|
model_choice, |
|
text, |
|
language, |
|
speaker_audio, |
|
prefix_audio, |
|
e1, |
|
e2, |
|
e3, |
|
e4, |
|
e5, |
|
e6, |
|
e7, |
|
e8, |
|
vq_single, |
|
fmax, |
|
pitch_std, |
|
speaking_rate, |
|
dnsmos_ovrl, |
|
speaker_noised, |
|
cfg_scale, |
|
min_p, |
|
seed, |
|
randomize_seed, |
|
unconditional_keys, |
|
progress=gr.Progress(), |
|
): |
|
""" |
|
Generates audio based on the provided UI parameters. |
|
We do NOT use language_id or ctc_loss even if the model has them. |
|
""" |
|
selected_model = MODELS[model_choice] |
|
|
|
speaker_noised_bool = bool(speaker_noised) |
|
fmax = float(fmax) |
|
pitch_std = float(pitch_std) |
|
speaking_rate = float(speaking_rate) |
|
dnsmos_ovrl = float(dnsmos_ovrl) |
|
cfg_scale = float(cfg_scale) |
|
min_p = float(min_p) |
|
seed = int(seed) |
|
max_new_tokens = 86 * 30 |
|
|
|
if randomize_seed: |
|
seed = torch.randint(0, 2**32 - 1, (1,)).item() |
|
torch.manual_seed(seed) |
|
|
|
speaker_embedding = None |
|
if speaker_audio is not None and "speaker" not in unconditional_keys: |
|
wav, sr = torchaudio.load(speaker_audio) |
|
speaker_embedding = selected_model.make_speaker_embedding(wav, sr) |
|
speaker_embedding = speaker_embedding.to(device, dtype=torch.bfloat16) |
|
|
|
audio_prefix_codes = None |
|
if prefix_audio is not None: |
|
wav_prefix, sr_prefix = torchaudio.load(prefix_audio) |
|
wav_prefix = wav_prefix.mean(0, keepdim=True) |
|
wav_prefix = torchaudio.functional.resample(wav_prefix, sr_prefix, selected_model.autoencoder.sampling_rate) |
|
wav_prefix = wav_prefix.to(device, dtype=torch.float32) |
|
with torch.autocast(device, dtype=torch.float32): |
|
audio_prefix_codes = selected_model.autoencoder.encode(wav_prefix.unsqueeze(0)) |
|
|
|
emotion_tensor = torch.tensor(list(map(float, [e1, e2, e3, e4, e5, e6, e7, e8])), device=device) |
|
|
|
vq_val = float(vq_single) |
|
vq_tensor = torch.tensor([vq_val] * 8, device=device).unsqueeze(0) |
|
|
|
cond_dict = make_cond_dict( |
|
text=text, |
|
language=language, |
|
speaker=speaker_embedding, |
|
emotion=emotion_tensor, |
|
vqscore_8=vq_tensor, |
|
fmax=fmax, |
|
pitch_std=pitch_std, |
|
speaking_rate=speaking_rate, |
|
dnsmos_ovrl=dnsmos_ovrl, |
|
speaker_noised=speaker_noised_bool, |
|
device=device, |
|
unconditional_keys=unconditional_keys, |
|
) |
|
conditioning = selected_model.prepare_conditioning(cond_dict) |
|
|
|
estimated_generation_duration = 30 * len(text) / 400 |
|
estimated_total_steps = int(estimated_generation_duration * 86) |
|
|
|
def update_progress(_frame: torch.Tensor, step: int, _total_steps: int) -> bool: |
|
progress((step, estimated_total_steps)) |
|
return True |
|
|
|
codes = selected_model.generate( |
|
prefix_conditioning=conditioning, |
|
audio_prefix_codes=audio_prefix_codes, |
|
max_new_tokens=max_new_tokens, |
|
cfg_scale=cfg_scale, |
|
batch_size=1, |
|
sampling_params=dict(min_p=min_p), |
|
callback=update_progress, |
|
) |
|
|
|
wav_out = selected_model.autoencoder.decode(codes).cpu().detach() |
|
sr_out = selected_model.autoencoder.sampling_rate |
|
if wav_out.dim() == 2 and wav_out.size(0) > 1: |
|
wav_out = wav_out[0:1, :] |
|
return (sr_out, wav_out.squeeze().numpy()), seed |
|
|
|
|
|
def build_interface(): |
|
with gr.Blocks(theme='ParityError/Interstellar') as demo: |
|
gr.Markdown("# Zonos v0.1") |
|
gr.Markdown("State of the art text-to-speech model [[model]](https://huggingface.co/collections/Zyphra/zonos-v01-67ac661c85e1898670823b4f), [[blog]](https://www.zyphra.com/post/beta-release-of-zonos-v0-1), [[Zyphra Audio (hosted service)]](https://maia.zyphra.com/sign-in?redirect_url=https%3A%2F%2Fmaia.zyphra.com%2Faudio) ") |
|
with gr.Row(): |
|
with gr.Column(): |
|
text = gr.Textbox( |
|
label="Text to Synthesize", |
|
value="Zonos uses eSpeak for text to phoneme conversion!", |
|
lines=4, |
|
max_length=500, |
|
) |
|
with gr.Row(): |
|
language = gr.Dropdown( |
|
choices=supported_language_codes, |
|
value="en-us", |
|
label="Language", |
|
) |
|
model_choice = gr.Dropdown( |
|
choices=MODEL_NAMES, |
|
value="Zyphra/Zonos-v0.1-transformer", |
|
label="Zonos Model Type", |
|
info="Select the model variant to use.", |
|
) |
|
speaker_noised_checkbox = gr.Checkbox( |
|
label="Denoise Speaker?", |
|
value=False |
|
) |
|
speaker_audio = gr.Audio( |
|
label="Optional Speaker Audio (for cloning)", |
|
type="filepath", |
|
) |
|
generate_button = gr.Button("Generate Audio") |
|
|
|
with gr.Column(): |
|
output_audio = gr.Audio(label="Generated Audio", type="numpy", autoplay=True) |
|
|
|
with gr.Accordion("Toggles", open=True): |
|
gr.Markdown( |
|
"### Emotion Sliders\n" |
|
"Warning: The way these sliders work is not intuitive and may require some trial and error to get the desired effect.\n" |
|
"Certain configurations can cause the model to become unstable. Setting emotion to unconditional may help." |
|
) |
|
with gr.Row(): |
|
emotion1 = gr.Slider(0.0, 1.0, 1.0, 0.05, label="Happiness") |
|
emotion2 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Sadness") |
|
emotion3 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Disgust") |
|
emotion4 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Fear") |
|
with gr.Row(): |
|
emotion5 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Surprise") |
|
emotion6 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Anger") |
|
emotion7 = gr.Slider(0.0, 1.0, 0.1, 0.05, label="Other") |
|
emotion8 = gr.Slider(0.0, 1.0, 0.2, 0.05, label="Neutral") |
|
|
|
gr.Markdown( |
|
"### Unconditional Toggles\n" |
|
"Checking a box will make the model ignore the corresponding conditioning value and make it unconditional.\n" |
|
'Practically this means the given conditioning feature will be unconstrained and "filled in automatically".' |
|
) |
|
with gr.Row(): |
|
unconditional_keys = gr.CheckboxGroup( |
|
[ |
|
"speaker", |
|
"emotion", |
|
"vqscore_8", |
|
"fmax", |
|
"pitch_std", |
|
"speaking_rate", |
|
"dnsmos_ovrl", |
|
"speaker_noised", |
|
], |
|
value=["emotion"], |
|
label="Unconditional Keys", |
|
) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("## Conditioning Parameters") |
|
dnsmos_slider = gr.Slider(1.0, 5.0, value=4.0, step=0.1, label="DNSMOS Overall") |
|
fmax_slider = gr.Slider(0, 24000, value=24000, step=1, label="Fmax (Hz)") |
|
vq_single_slider = gr.Slider(0.5, 0.8, 0.78, 0.01, label="VQ Score") |
|
pitch_std_slider = gr.Slider(0.0, 300.0, value=45.0, step=1, label="Pitch Std") |
|
speaking_rate_slider = gr.Slider(5.0, 30.0, value=15.0, step=0.5, label="Speaking Rate") |
|
|
|
with gr.Column(): |
|
gr.Markdown("## Generation Parameters") |
|
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.0, 0.1, label="CFG Scale") |
|
min_p_slider = gr.Slider(0.0, 1.0, 0.15, 0.01, label="Min P") |
|
seed_number = gr.Number(label="Seed", value=420, precision=0) |
|
randomize_seed_toggle = gr.Checkbox(label="Randomize Seed (before generation)", value=True) |
|
|
|
prefix_audio = gr.Audio( |
|
value="assets/silence_100ms.wav", |
|
label="Optional Prefix Audio (continue from this audio)", |
|
type="filepath", |
|
) |
|
|
|
model_choice.change( |
|
fn=update_ui, |
|
inputs=[model_choice], |
|
outputs=[ |
|
text, |
|
language, |
|
speaker_audio, |
|
prefix_audio, |
|
emotion1, |
|
emotion2, |
|
emotion3, |
|
emotion4, |
|
emotion5, |
|
emotion6, |
|
emotion7, |
|
emotion8, |
|
vq_single_slider, |
|
fmax_slider, |
|
pitch_std_slider, |
|
speaking_rate_slider, |
|
dnsmos_slider, |
|
speaker_noised_checkbox, |
|
unconditional_keys, |
|
], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generate_button.click( |
|
fn=generate_audio, |
|
inputs=[ |
|
model_choice, |
|
text, |
|
language, |
|
speaker_audio, |
|
prefix_audio, |
|
emotion1, |
|
emotion2, |
|
emotion3, |
|
emotion4, |
|
emotion5, |
|
emotion6, |
|
emotion7, |
|
emotion8, |
|
vq_single_slider, |
|
fmax_slider, |
|
pitch_std_slider, |
|
speaking_rate_slider, |
|
dnsmos_slider, |
|
speaker_noised_checkbox, |
|
cfg_scale_slider, |
|
min_p_slider, |
|
seed_number, |
|
randomize_seed_toggle, |
|
unconditional_keys, |
|
], |
|
outputs=[output_audio, seed_number], |
|
) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
demo = build_interface() |
|
share = getenv("GRADIO_SHARE", "False").lower() in ("true", "1", "t") |
|
demo.launch(server_name="0.0.0.0", server_port=7860, share=share, ssr_mode=False) |
|
|