|
import json |
|
from typing import Callable |
|
|
|
import safetensors |
|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import hf_hub_download |
|
from mamba_ssm.utils.generation import InferenceParams |
|
from tqdm import tqdm |
|
|
|
from zonos.autoencoder import DACAutoencoder |
|
from zonos.backbone import ZonosBackbone |
|
from zonos.codebook_pattern import apply_delay_pattern, revert_delay_pattern |
|
from zonos.conditioning import PrefixConditioner |
|
from zonos.config import ZonosConfig |
|
from zonos.sampling import sample_from_logits |
|
from zonos.speaker_cloning import SpeakerEmbeddingLDA |
|
|
|
|
|
class Zonos(nn.Module): |
|
def __init__(self, config: ZonosConfig): |
|
super().__init__() |
|
self.config = config |
|
dim = config.backbone.d_model |
|
self.eos_token_id = config.eos_token_id |
|
self.masked_token_id = config.masked_token_id |
|
|
|
self.autoencoder = DACAutoencoder() |
|
self.backbone = ZonosBackbone(config.backbone) |
|
self.prefix_conditioner = PrefixConditioner(config.prefix_conditioner, dim) |
|
self.spk_clone_model = None |
|
|
|
|
|
self.embeddings = nn.ModuleList([nn.Embedding(1026, dim) for _ in range(self.autoencoder.num_codebooks)]) |
|
self.heads = nn.ModuleList([nn.Linear(dim, 1025, bias=False) for _ in range(self.autoencoder.num_codebooks)]) |
|
|
|
self._cg_graph = None |
|
self._cg_batch_size = None |
|
self._cg_input_ids = None |
|
self._cg_logits = None |
|
self._cg_inference_params = None |
|
self._cg_scale = None |
|
|
|
@classmethod |
|
def from_pretrained(cls, repo_id: str, revision: str | None = None, device: str = "cuda") -> "Zonos": |
|
config_path = hf_hub_download(repo_id=repo_id, filename="config.json", revision=revision) |
|
model_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors", revision=revision) |
|
return cls.from_local(config_path, model_path, device) |
|
|
|
@classmethod |
|
def from_local(cls, config_path: str, model_path: str, device: str = "cuda") -> "Zonos": |
|
config = ZonosConfig.from_dict(json.load(open(config_path))) |
|
model = cls(config).to(device, torch.bfloat16) |
|
model.autoencoder.dac.to(device) |
|
|
|
sd = model.state_dict() |
|
with safetensors.safe_open(model_path, framework="pt") as f: |
|
for k in f.keys(): |
|
sd[k] = f.get_tensor(k) |
|
model.load_state_dict(sd) |
|
|
|
return model |
|
|
|
def make_speaker_embedding(self, wav: torch.Tensor, sr: int) -> torch.Tensor: |
|
"""Generate a speaker embedding from an audio clip.""" |
|
if self.spk_clone_model is None: |
|
self.spk_clone_model = SpeakerEmbeddingLDA() |
|
_, spk_embedding = self.spk_clone_model(wav.to(self.spk_clone_model.device), sr) |
|
return spk_embedding.unsqueeze(0).bfloat16() |
|
|
|
def embed_codes(self, codes: torch.Tensor) -> torch.Tensor: |
|
return sum(emb(codes[:, i]) for i, emb in enumerate(self.embeddings)) |
|
|
|
def apply_heads(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
return torch.stack([head(hidden_states) for head in self.heads], dim=1) |
|
|
|
def _compute_logits( |
|
self, hidden_states: torch.Tensor, inference_params: InferenceParams, cfg_scale: float |
|
) -> torch.Tensor: |
|
""" |
|
Pass `hidden_states` into `backbone` and `multi_head`, applying |
|
classifier-free guidance if `cfg_scale != 1.0`. |
|
""" |
|
last_hidden_states = self.backbone(hidden_states, inference_params)[:, -1, :].unsqueeze(1) |
|
logits = self.apply_heads(last_hidden_states).squeeze(2).float() |
|
if cfg_scale != 1.0: |
|
cond_logits, uncond_logits = logits.chunk(2) |
|
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale |
|
return logits |
|
|
|
def _decode_one_token( |
|
self, |
|
input_ids: torch.Tensor, |
|
inference_params: InferenceParams, |
|
cfg_scale: float, |
|
) -> torch.Tensor: |
|
""" |
|
Single-step decode. Prepares the hidden states, possibly replicates them |
|
for CFG, and then delegates to `_compute_logits`. |
|
|
|
Below we wrap this function with a simple CUDA Graph capturing mechanism, |
|
doing 3 warmup steps if needed and then capturing or replaying the graph. |
|
We only recapture if the batch size changes. |
|
""" |
|
|
|
if cfg_scale == 1.0: |
|
hidden_states = self.embed_codes(input_ids) |
|
return self._compute_logits(hidden_states, inference_params, cfg_scale) |
|
|
|
bsz = input_ids.size(0) |
|
|
|
need_capture = (self._cg_graph is None) or (self._cg_batch_size != bsz) |
|
|
|
if need_capture: |
|
self._cg_graph = None |
|
|
|
self._cg_batch_size = bsz |
|
self._cg_inference_params = inference_params |
|
self._cg_scale = cfg_scale |
|
|
|
for _ in range(3): |
|
hidden_states = self.embed_codes(input_ids) |
|
hidden_states = hidden_states.repeat(2, 1, 1) |
|
logits = self._compute_logits(hidden_states, inference_params, cfg_scale) |
|
|
|
self._cg_input_ids = input_ids.clone() |
|
self._cg_logits = torch.empty_like(logits) |
|
|
|
g = torch.cuda.CUDAGraph() |
|
|
|
def capture_region(): |
|
hidden_states_local = self.embed_codes(self._cg_input_ids) |
|
hidden_states_local = hidden_states_local.repeat(2, 1, 1) |
|
self._cg_logits = self._compute_logits(hidden_states_local, self._cg_inference_params, self._cg_scale) |
|
|
|
with torch.cuda.graph(g): |
|
capture_region() |
|
|
|
self._cg_graph = g |
|
|
|
else: |
|
self._cg_input_ids.copy_(input_ids) |
|
|
|
self._cg_graph.replay() |
|
|
|
return self._cg_logits |
|
|
|
def _prefill( |
|
self, |
|
prefix_hidden_states: torch.Tensor, |
|
input_ids: torch.Tensor, |
|
inference_params: InferenceParams, |
|
cfg_scale: float, |
|
) -> torch.Tensor: |
|
""" |
|
"Prefill" mode: we already have `prefix_hidden_states`, and we want |
|
to append new embeddings, then compute the logits. |
|
""" |
|
|
|
if cfg_scale != 1.0: |
|
input_ids = input_ids.expand(prefix_hidden_states.shape[0], -1, -1) |
|
hidden_states = torch.cat([prefix_hidden_states, self.embed_codes(input_ids)], dim=1) |
|
return self._compute_logits(hidden_states, inference_params, cfg_scale) |
|
|
|
def setup_cache(self, batch_size: int, max_seqlen: int, dtype: torch.dtype = torch.bfloat16) -> InferenceParams: |
|
key_value_memory_dict = { |
|
i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype) |
|
for i, layer in enumerate(self.backbone.layers) |
|
} |
|
lengths_per_sample = torch.full((batch_size,), 0, dtype=torch.int32, device="cuda") |
|
return InferenceParams(max_seqlen, batch_size, 0, 0, key_value_memory_dict, lengths_per_sample) |
|
|
|
def prepare_conditioning(self, cond_dict: dict, uncond_dict: dict | None = None) -> torch.Tensor: |
|
if uncond_dict is None: |
|
uncond_dict = {k: cond_dict[k] for k in self.prefix_conditioner.required_keys} |
|
return torch.cat( |
|
[ |
|
self.prefix_conditioner(cond_dict), |
|
self.prefix_conditioner(uncond_dict), |
|
] |
|
) |
|
|
|
@torch.inference_mode() |
|
def generate( |
|
self, |
|
prefix_conditioning: torch.Tensor, |
|
audio_prefix_codes: torch.Tensor | None = None, |
|
max_new_tokens: int = 86 * 30, |
|
cfg_scale: float = 2.0, |
|
batch_size: int = 1, |
|
sampling_params: dict = dict(min_p=0.1), |
|
progress_bar: bool = True, |
|
callback: Callable[[torch.Tensor, int, int], bool] | None = None, |
|
): |
|
assert cfg_scale != 1, "TODO: add support for cfg_scale=1" |
|
prefix_audio_len = 0 if audio_prefix_codes is None else audio_prefix_codes.shape[2] |
|
|
|
unknown_token = -1 |
|
audio_seq_len = prefix_audio_len + max_new_tokens |
|
seq_len = prefix_conditioning.shape[1] + audio_seq_len |
|
|
|
inference_params = self.setup_cache(batch_size=batch_size * 2, max_seqlen=seq_len) |
|
|
|
codes = torch.full((batch_size, 9, audio_seq_len), unknown_token, device="cuda") |
|
if audio_prefix_codes is not None: |
|
codes[..., :prefix_audio_len] = audio_prefix_codes |
|
|
|
delayed_codes = apply_delay_pattern(codes, self.masked_token_id) |
|
|
|
delayed_prefix_audio_codes = delayed_codes[..., : prefix_audio_len + 1] |
|
|
|
logits = self._prefill(prefix_conditioning, delayed_prefix_audio_codes, inference_params, cfg_scale) |
|
next_token = sample_from_logits(logits, **sampling_params) |
|
|
|
offset = delayed_prefix_audio_codes.shape[2] |
|
frame = delayed_codes[..., offset : offset + 1] |
|
frame.masked_scatter_(frame == unknown_token, next_token) |
|
|
|
prefix_length = prefix_conditioning.shape[1] + prefix_audio_len + 1 |
|
inference_params.seqlen_offset += prefix_length |
|
inference_params.lengths_per_sample[:] += prefix_length |
|
|
|
logit_bias = torch.zeros_like(logits) |
|
logit_bias[:, 1:, self.eos_token_id] = -torch.inf |
|
|
|
stopping = torch.zeros(batch_size, dtype=torch.bool, device="cuda") |
|
max_steps = delayed_codes.shape[2] - offset |
|
remaining_steps = torch.full((batch_size,), max_steps, device="cuda") |
|
progress = tqdm(total=max_steps, desc="Generating", disable=not progress_bar) |
|
|
|
step = 0 |
|
while torch.max(remaining_steps) > 0: |
|
offset += 1 |
|
input_ids = delayed_codes[..., offset - 1 : offset] |
|
logits = self._decode_one_token(input_ids, inference_params, cfg_scale) |
|
|
|
next_token = sample_from_logits(logits, generated_tokens=delayed_codes[..., :offset], **sampling_params) |
|
eos_in_cb0 = next_token[:, 0] == self.eos_token_id |
|
|
|
remaining_steps[eos_in_cb0[:, 0]] = torch.minimum(remaining_steps[eos_in_cb0[:, 0]], torch.tensor(9)) |
|
stopping |= eos_in_cb0[:, 0] |
|
|
|
eos_codebook_idx = 9 - remaining_steps |
|
eos_codebook_idx = torch.clamp(eos_codebook_idx, max=9 - 1) |
|
for i in range(next_token.shape[0]): |
|
if stopping[i]: |
|
idx = eos_codebook_idx[i].item() |
|
next_token[i, :idx] = self.masked_token_id |
|
next_token[i, idx] = self.eos_token_id |
|
|
|
frame = delayed_codes[..., offset : offset + 1] |
|
frame.masked_scatter_(frame == unknown_token, next_token) |
|
inference_params.seqlen_offset += 1 |
|
inference_params.lengths_per_sample[:] += 1 |
|
|
|
remaining_steps -= 1 |
|
|
|
progress.update() |
|
step += 1 |
|
|
|
if callback is not None and not callback(frame, step, max_steps): |
|
break |
|
|
|
out_codes = revert_delay_pattern(delayed_codes) |
|
out_codes.masked_fill_(out_codes >= 1024, 0) |
|
out_codes = out_codes[..., : offset - 9] |
|
|
|
self._cg_graph = None |
|
|
|
return out_codes |
|
|