|
import gradio as gr
|
|
|
|
import torch
|
|
import librosa
|
|
import json
|
|
|
|
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
|
|
|
processor = AutoProcessor.from_pretrained("dmatekenya/whisper-large-v3-chichewa")
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained("dmatekenya/whisper-large-v3-chichewa")
|
|
|
|
def transcribe(audio_file_mic=None, audio_file_upload=None, language="English (eng)"):
|
|
if audio_file_mic:
|
|
audio_file = audio_file_mic
|
|
elif audio_file_upload:
|
|
audio_file = audio_file_upload
|
|
else:
|
|
return "Please upload an audio file or record one"
|
|
|
|
|
|
speech, sample_rate = librosa.load(audio_file)
|
|
if sample_rate != 16000:
|
|
speech = librosa.resample(speech, orig_sr=sample_rate, target_sr=16000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs = processor(speech, sampling_rate=16_000, return_tensors="pt")
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs).logits
|
|
|
|
ids = torch.argmax(outputs, dim=-1)[0]
|
|
transcription = processor.decode(ids)
|
|
return transcription
|
|
|
|
|
|
description = ''''''
|
|
|
|
iface = gr.Interface(fn=transcribe,
|
|
inputs=[
|
|
gr.Audio(source="microphone", type="filepath", label="Record Audio"),
|
|
gr.Audio(source="upload", type="filepath", label="Upload Audio"),
|
|
],
|
|
outputs=gr.Textbox(label="Transcription"),
|
|
description=description
|
|
)
|
|
iface.launch() |