Spaces:
Sleeping
Sleeping
# + | |
import streamlit as st | |
# Set up the document loader | |
from langchain_community.document_loaders import PyPDFLoader | |
loader = PyPDFLoader("ca30x30-2024.pdf") | |
docs = loader.load() | |
# Set up the language model | |
from langchain_openai import ChatOpenAI | |
llm = ChatOpenAI(model = "llama3", api_key=st.secrets["LITELLM_KEY"], base_url = "https://llm.nrp-nautilus.io", temperature=0) | |
# Set up the embedding model | |
from langchain_openai import OpenAIEmbeddings | |
embedding = OpenAIEmbeddings( | |
model = "embed-mistral", | |
api_key=st.secrets["LITELLM_KEY"], | |
base_url = "https://llm.nrp-nautilus.io" | |
) | |
# Build a retrival agent | |
from langchain_core.vectorstores import InMemoryVectorStore | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
splits = text_splitter.split_documents(docs) | |
vectorstore = InMemoryVectorStore.from_documents(documents=splits, embedding=embedding) | |
retriever = vectorstore.as_retriever() | |
from langchain.chains import create_retrieval_chain | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
system_prompt = ( | |
"You are an assistant for question-answering tasks. " | |
"Use the following pieces of retrieved context to answer " | |
"the question. If you don't know the answer, say that you " | |
"don't know. Use three sentences maximum and keep the " | |
"answer concise." | |
"\n\n" | |
"{context}" | |
) | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", system_prompt), | |
("human", "{input}"), | |
] | |
) | |
question_answer_chain = create_stuff_documents_chain(llm, prompt) | |
rag_chain = create_retrieval_chain(retriever, question_answer_chain) | |
# agent is ready to test: | |
#results = rag_chain.invoke({"input": "What is the goal of CA 30x30?"}) | |
#results['answer'] | |
# Place agent inside a streamlit application: | |
st.title("RAG Demo") | |
if prompt := st.chat_input("What is the goal of CA 30x30?"): | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
with st.chat_message("assistant"): | |
results = rag_chain.invoke({"input": prompt}) | |
st.write(results['answer']) | |
st.write('**Context metadata:**\n') | |
st.write(results['context'][0]['metadata']) | |
# adapt for memory / multi-question interaction with: | |
# https://python.langchain.com/docs/tutorials/qa_chat_history/ | |
# Also see structured outputs. | |