Spaces:
Sleeping
Sleeping
templates
Browse files
rag.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# +
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
# Set up the document loader
|
5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
6 |
+
loader = PyPDFLoader("ca30x30-2024.pdf")
|
7 |
+
docs = loader.load()
|
8 |
+
|
9 |
+
# Set up the language model
|
10 |
+
from langchain_openai import ChatOpenAI
|
11 |
+
llm = ChatOpenAI(model = "llama3", api_key=st.secrets["LITELLM_KEY"], base_url = "https://llm.nrp-nautilus.io", temperature=0)
|
12 |
+
|
13 |
+
# Set up the embedding model
|
14 |
+
from langchain_openai import OpenAIEmbeddings
|
15 |
+
embedding = OpenAIEmbeddings(
|
16 |
+
model = "embed-mistral",
|
17 |
+
api_key=st.secrets["LITELLM_KEY"],
|
18 |
+
base_url = "https://llm.nrp-nautilus.io"
|
19 |
+
)
|
20 |
+
|
21 |
+
# Build a retrival agent
|
22 |
+
from langchain_core.vectorstores import InMemoryVectorStore
|
23 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
24 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
25 |
+
splits = text_splitter.split_documents(docs)
|
26 |
+
vectorstore = InMemoryVectorStore.from_documents(documents=splits, embedding=embedding)
|
27 |
+
retriever = vectorstore.as_retriever()
|
28 |
+
|
29 |
+
from langchain.chains import create_retrieval_chain
|
30 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
31 |
+
from langchain_core.prompts import ChatPromptTemplate
|
32 |
+
system_prompt = (
|
33 |
+
"You are an assistant for question-answering tasks. "
|
34 |
+
"Use the following pieces of retrieved context to answer "
|
35 |
+
"the question. If you don't know the answer, say that you "
|
36 |
+
"don't know. Use three sentences maximum and keep the "
|
37 |
+
"answer concise."
|
38 |
+
"\n\n"
|
39 |
+
"{context}"
|
40 |
+
)
|
41 |
+
prompt = ChatPromptTemplate.from_messages(
|
42 |
+
[
|
43 |
+
("system", system_prompt),
|
44 |
+
("human", "{input}"),
|
45 |
+
]
|
46 |
+
)
|
47 |
+
question_answer_chain = create_stuff_documents_chain(llm, prompt)
|
48 |
+
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
49 |
+
|
50 |
+
# agent is ready to test:
|
51 |
+
#results = rag_chain.invoke({"input": "What is the goal of CA 30x30?"})
|
52 |
+
#results['answer']
|
53 |
+
|
54 |
+
|
55 |
+
# Place agent inside a streamlit application:
|
56 |
+
st.title("RAG Demo")
|
57 |
+
|
58 |
+
if prompt := st.chat_input("What is the goal of CA 30x30?"):
|
59 |
+
with st.chat_message("user"):
|
60 |
+
st.markdown(prompt)
|
61 |
+
|
62 |
+
with st.chat_message("assistant"):
|
63 |
+
results = rag_chain.invoke({"input": prompt})
|
64 |
+
st.write(results['answer'])
|
65 |
+
|
66 |
+
st.write('**Context metadata:**\n')
|
67 |
+
st.write(results['context'][0]['metadata'])
|
68 |
+
|
sql.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from langchain_community.utilities import SQLDatabase
|
4 |
+
from langchain_openai import ChatOpenAI
|
5 |
+
from langchain.chains import create_sql_query_chain
|
6 |
+
|
7 |
+
# Set up Langchain SQL access
|
8 |
+
db = SQLDatabase.from_uri("duckdb:///tmp.db", view_support=True)
|
9 |
+
parquet = "s3://us-west-2.opendata.source.coop/cboettig/gbif/2024-10-01/**"
|
10 |
+
db.run(f"create or replace view gbif_h3 as select * from read_parquet('{parquet}');")
|
11 |
+
llm = ChatOpenAI(model="llama3", temperature=0, api_key=st.secrets["LITELLM_KEY"], base_url = "https://llm.nrp-nautilus.io")
|
12 |
+
chain = create_sql_query_chain(llm, db)
|
13 |
+
|