import streamlit as st from langchain_community.document_loaders import PyPDFLoader ## dockerized streamlit app wants to read from os.getenv(), otherwise use st.secrets import os api_key = os.getenv("LITELLM_KEY") if api_key is None: api_key = st.secrets["LITELLM_KEY"] st.title("RAG Demo") ''' This demonstration combines an LLM trained specifically text embedding (`embed-mistral` in our case) with a traditional "instruct" based LLM (`llama3`) to create a retreival augmented generation (RAG) interface to a provided PDF document. We can query the model to return relatively precise citations to the matched text in the PDF document to verify the queries. Provide a URL to a PDF document you want to ask questions about. Once the document has been uploaded and parsed, ask your questions in the chat dialog that will appear below. The default example comes from a recent report on California's initiative for biodiversity conservation. ''' # Create a file uploader? # st.sidebar.file_uploader("Choose a PDF file", type=["pdf"]) url = st.text_input("PDF URL", "https://www.resources.ca.gov/-/media/CNRA-Website/Files/2024_30x30_Pathways_Progress_Report.pdf") # + import bs4 from langchain import hub from langchain_chroma import Chroma from langchain_community.document_loaders import WebBaseLoader from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter @st.cache_data def pdf_loader(url): loader = PyPDFLoader(url) return loader.load() docs = pdf_loader(url) # Set up the language model from langchain_openai import ChatOpenAI llm = ChatOpenAI(model = "llama3", api_key = api_key, base_url = "https://llm.nrp-nautilus.io", temperature=0) # Set up the embedding model from langchain_openai import OpenAIEmbeddings embedding = OpenAIEmbeddings( model = "embed-mistral", api_key = api_key, base_url = "https://llm.nrp-nautilus.io" ) # Build a retrival agent from langchain_core.vectorstores import InMemoryVectorStore from langchain_text_splitters import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) vectorstore = InMemoryVectorStore.from_documents(documents=splits, embedding=embedding) retriever = vectorstore.as_retriever() from langchain.chains import create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate system_prompt = ( "You are an assistant for question-answering tasks. " "Use the following pieces of retrieved context to answer " "the question. If you don't know the answer, say that you " "don't know. Use three sentences maximum and keep the " "answer concise." "\n\n" "{context}" ) prompt = ChatPromptTemplate.from_messages( [ ("system", system_prompt), ("human", "{input}"), ] ) question_answer_chain = create_stuff_documents_chain(llm, prompt) rag_chain = create_retrieval_chain(retriever, question_answer_chain) # Place agent inside a streamlit application: if prompt := st.chat_input("What is the goal of CA 30x30?"): with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant"): results = rag_chain.invoke({"input": prompt}) st.write(results['answer']) with st.expander("See context matched"): st.write(results['context'][0].page_content) st.write(results['context'][0].metadata) # adapt for memory / multi-question interaction with: # https://python.langchain.com/docs/tutorials/qa_chat_history/ # Also see structured outputs.