File size: 10,405 Bytes
1b85eb1
 
 
 
d48b10c
1b85eb1
 
5dee49f
 
 
 
d48b10c
5dee49f
 
 
 
 
 
 
 
 
 
 
 
 
d48b10c
5dee49f
 
 
 
 
 
 
 
 
d48b10c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dee49f
 
1b85eb1
 
 
 
 
 
 
 
 
 
 
 
d48b10c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b85eb1
 
 
 
 
 
d48b10c
1b85eb1
 
4590b2a
 
 
 
d48b10c
4590b2a
 
 
 
 
 
 
 
 
5dee49f
 
 
 
 
d48b10c
 
5dee49f
4590b2a
 
1b85eb1
 
d48b10c
 
1b85eb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d48b10c
 
1b85eb1
 
 
d48b10c
 
 
 
 
 
 
1b85eb1
 
 
 
d48b10c
 
1b85eb1
 
 
d48b10c
5dee49f
d48b10c
 
1b85eb1
 
 
 
d48b10c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b85eb1
5dee49f
 
 
 
d48b10c
5dee49f
 
 
 
 
 
 
d48b10c
5dee49f
 
 
 
1b85eb1
d48b10c
 
1b85eb1
d48b10c
 
 
1b85eb1
 
d48b10c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b85eb1
 
 
 
 
 
 
 
 
d48b10c
1b85eb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "e84709ab-1b47-49ee-8cbd-8aa69744b6c3",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c4382edb57b643e6907b0314c79387bd",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b4ae3a5cd5f84c5b86fdcd767d330adf",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">DatabaseTable: tmp2.main.t2\n",
       "  gid                int64\n",
       "  cpad_ACCESS_TYP    string\n",
       "  cpad_PARK_NAME     string\n",
       "  cpad_MNG_AGENCY    string\n",
       "  cpad_MNG_AG_LEV    string\n",
       "  reGAP              int16\n",
       "  Easement           int16\n",
       "  TYPE               string\n",
       "  CA_County_Name     string\n",
       "  CA_Region_Name     string\n",
       "  TerrMar            string\n",
       "  CA_Ecoregion_Name  string\n",
       "  ACCESS_TYP         string\n",
       "  MNG_AGNCY          string\n",
       "  MNG_AG_LEV         string\n",
       "  UNIT_NAME          string\n",
       "  DefaultSelection   string\n",
       "  CA_Ecoregion_Acres float32\n",
       "  CA_Region_Acres    float32\n",
       "  CA_County_Acres    float32\n",
       "  Acres              float32\n",
       "  CA_Marine_Acres    float32\n",
       "  Release_Year       int16\n",
       "  mgmt_stack         string\n",
       "  geom               geospatial:geometry\n",
       "  SHAPE_bbox         xmin: float32\n",
       "  ymin: float32\n",
       "  xmax: float32\n",
       "  ymax: float32\n",
       "</pre>\n"
      ],
      "text/plain": [
       "DatabaseTable: tmp2.main.t2\n",
       "  gid                int64\n",
       "  cpad_ACCESS_TYP    string\n",
       "  cpad_PARK_NAME     string\n",
       "  cpad_MNG_AGENCY    string\n",
       "  cpad_MNG_AG_LEV    string\n",
       "  reGAP              int16\n",
       "  Easement           int16\n",
       "  TYPE               string\n",
       "  CA_County_Name     string\n",
       "  CA_Region_Name     string\n",
       "  TerrMar            string\n",
       "  CA_Ecoregion_Name  string\n",
       "  ACCESS_TYP         string\n",
       "  MNG_AGNCY          string\n",
       "  MNG_AG_LEV         string\n",
       "  UNIT_NAME          string\n",
       "  DefaultSelection   string\n",
       "  CA_Ecoregion_Acres float32\n",
       "  CA_Region_Acres    float32\n",
       "  CA_County_Acres    float32\n",
       "  Acres              float32\n",
       "  CA_Marine_Acres    float32\n",
       "  Release_Year       int16\n",
       "  mgmt_stack         string\n",
       "  geom               geospatial:geometry\n",
       "  SHAPE_bbox         xmin: float32\n",
       "  ymin: float32\n",
       "  xmax: float32\n",
       "  ymax: float32"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import ibis\n",
    "from ibis import _\n",
    "conn = ibis.duckdb.connect(\"tmp2\", extensions=[\"spatial\"])\n",
    "\n",
    "tbl = (\n",
    "    conn.read_parquet(\"https://data.source.coop/cboettig/ca30x30/ca_areas.parquet\")\n",
    "    .cast({\"SHAPE\": \"geometry\"})\n",
    "    .rename(geom = \"SHAPE\", gid = \"OBJECTID\")\n",
    "   # .filter(_.UNIT_NAME == \"Angeles National Forest\")\n",
    "    .filter(_.reGAP < 3) \n",
    ")\n",
    "conn.create_table(\"t1\", tbl.filter(_.Release_Year == 2024), overwrite = True)\n",
    "conn.create_table(\"t2\", tbl.filter(_.Release_Year == 2023), overwrite = True)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "303792ac-9b1d-41b2-a17b-5cf855d70633",
   "metadata": {},
   "outputs": [],
   "source": [
    "ca2024 = conn.table(\"t1\").execute()\n",
    "ca2023 = conn.table(\"t2\").execute()\n",
    "\n",
    "import leafmap.maplibregl as leafmap\n",
    "m = leafmap.Map()\n",
    "m.add_gdf(ca2024, name = \"2024\")\n",
    "m.add_gdf(ca2023, name =\"2023\")\n",
    "\n",
    "m"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9fdd2ed2-623f-479c-b0b7-7c723f3f6728",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "conn.disconnect()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "121c3cad-680c-4f3a-9075-638711ea1634",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c69a096d24974e9ea8ad3d5b937b723a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 22min 10s, sys: 43 s, total: 22min 53s\n",
      "Wall time: 11min 47s\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "\n",
    "## RUN this on a machine with a whole lot of RAM.  consider filtering federal/non-federal first.\n",
    "import duckdb\n",
    "db = duckdb.connect(\"tmp2\")\n",
    "db.install_extension(\"spatial\")\n",
    "db.load_extension(\"spatial\")\n",
    "\n",
    "db.sql('''\n",
    "CREATE OR REPLACE TABLE diff AS (\n",
    "with temp as \n",
    "(\n",
    "  select   b.gid, st_union_agg(a.geom) as geom\n",
    "  from     t1 b join t2 a on st_intersects(a.geom, b.geom)\n",
    "  group by b.gid\n",
    ") \n",
    "select st_difference(b.geom,coalesce(t.geom, 'GEOMETRYCOLLECTION EMPTY'::geometry)) as geom\n",
    "from t1 b left join temp t on b.gid = t.gid\n",
    ")\n",
    "''')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "cf3d3e5b-2ff1-4ef9-a147-01f15e970e49",
   "metadata": {},
   "outputs": [],
   "source": [
    "## Cannot go straight to geoparquet due to M geometries!\n",
    "#db.table(\"diff\").to_parquet(\"diff.parquet\")\n",
    "\n",
    "## This doesn't work either: \n",
    "#db.sql('''CREATE OR REPLACE TABLE diff2024 AS SELECT *, st_force2d(geom) AS geom FROM diff''')\n",
    "\n",
    "## We could cast geom as blob...."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "308dc665-1323-4e9b-bc2d-69201c325c4b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# F*ck it.  Let's do it all in RAM via geopandas, which drops M geoms due to a fortunate bug! \n",
    "conn = ibis.duckdb.connect(\"tmp2\", extensions=[\"spatial\"])\n",
    "gdf = conn.table(\"diff\").mutate(geom = _.geom.convert(\"epsg:3310\",\"epsg:4326\")).execute()\n",
    "gdf.to_parquet(\"ca2024_diffs.parquet\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "063a11d8-15d7-4b91-b67c-3ccae3edcc8d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# stash in our team S3 storage \n",
    "\n",
    "import streamlit as st\n",
    "from minio import Minio\n",
    "import os\n",
    "# Get signed URLs to access license-controlled layers\n",
    "key = st.secrets[\"MINIO_KEY\"]\n",
    "secret = st.secrets[\"MINIO_SECRET\"]\n",
    "client = Minio(\"minio.carlboettiger.info\", key, secret, secure=True)\n",
    "\n",
    "size = os.path.getsize(\"ca2024_diffs.parquet\")\n",
    "with open(\"ca2024_diffs.parquet\", \"rb\") as file_data:\n",
    "    client.put_object(\"public-biodiversity\", \"ca30x30/ca2024_diffs.parquet\", file_data, length = size)\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "34425101-0592-42fd-9d62-22c9e7a6d6ac",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c5cc696c15374d519fb940e054a902f0",
       "version_major": 2,
       "version_minor": 1
      },
      "text/plain": [
       "Map(height='600px', map_options={'bearing': 0, 'center': (0, 20), 'pitch': 0, 'style': 'https://basemaps.carto…"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# can read from S3 and plot the whole thing.  Note gdf has no metadata.\n",
    "\n",
    "import leafmap.maplibregl as leafmap\n",
    "import ibis\n",
    "conn = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
    "gdf = conn.read_parquet(\"https://minio.carlboettiger.info/public-biodiversity/ca30x30/ca2024_diffs.parquet\").execute()\n",
    "m = leafmap.Map()\n",
    "m.add_gdf(gdf)\n",
    "#m.to_html(\"ca2024.html\")\n",
    "m"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "17af39a0-9a69-4bfa-9084-d7b26adf74fc",
   "metadata": {},
   "outputs": [],
   "source": [
    "path = \"ca2024.html\"\n",
    "size = os.path.getsize(path)\n",
    "with open(path, \"rb\") as file_data:\n",
    "    client.put_object(\"public-biodiversity\", \"ca30x30/\"+path, file_data, length = size)\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "775abaca-f21a-4cd8-ad7d-0310cc6b33b6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# \"TO 'new2024.geojson' WITH (FORMAT GDAL, DRIVER 'GeoJSON', LAYER_CREATION_OPTIONS 'WRITE_BBOX=YES')\""
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}