File size: 6,186 Bytes
d2c79b3
 
c2b1848
 
 
 
 
4590b2a
c2b1848
 
d2c79b3
 
81d856c
d2c79b3
0c88eb4
 
 
 
 
 
 
d2c79b3
 
 
 
 
0c88eb4
 
d2c79b3
0c88eb4
d2c79b3
 
 
 
81d856c
0c88eb4
d2c79b3
 
 
0c88eb4
 
d2c79b3
 
c2b1848
d2c79b3
 
0c88eb4
d2c79b3
0c88eb4
 
 
 
d2c79b3
0c88eb4
d2c79b3
 
 
 
81d856c
0c88eb4
d2c79b3
81d856c
d2c79b3
d48b10c
 
0c88eb4
d48b10c
d2c79b3
 
 
 
0c88eb4
 
 
d2c79b3
d48b10c
 
0c88eb4
 
 
 
2a9767f
 
d2c79b3
 
 
81d856c
0c88eb4
 
 
81d856c
 
 
 
01d9d25
d48b10c
 
01d9d25
d48b10c
 
 
 
 
 
 
 
81d856c
 
 
 
 
 
 
 
0c88eb4
 
d2c79b3
81d856c
 
 
 
 
0c88eb4
 
 
 
 
 
 
81d856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c88eb4
 
81d856c
d2c79b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a9767f
d2c79b3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "4b4adc2a-bf0c-4ace-87be-dbaf90be0125",
   "metadata": {},
   "source": [
    "# Pre-processing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f7e6298c-d886-432a-a1b7-c3fee914c24f",
   "metadata": {
    "editable": true,
    "slideshow": {
     "slide_type": ""
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "import ibis\n",
    "from ibis import _\n",
    "\n",
    "conn = ibis.duckdb.connect(\"tmp3\", extensions=[\"spatial\"])\n",
    "# ca_parquet = \"https://data.source.coop/cboettig/ca30x30/ca_areas.parquet\"\n",
    "# or use local copy:\n",
    "ca_parquet = \"ca_areas.parquet\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a3d4f189-1563-4868-9f1f-64d67569df27",
   "metadata": {},
   "outputs": [],
   "source": [
    "# negative buffer to account for overlapping boundaries. \n",
    "buffer = -30 #30m buffer \n",
    "\n",
    "tbl = (\n",
    "    conn.read_parquet(ca_parquet)\n",
    "    .cast({\"SHAPE\": \"geometry\"})\n",
    "    .rename(geom = \"SHAPE\")\n",
    "    .filter(_.reGAP < 3) # only gap 1 and 2 count towards 30x30\n",
    ")\n",
    "\n",
    "# polygons with release_year 2024 are a superset of release_year 2023. \n",
    "# use anti_join to isolate the objects that are in release_year 2024 but not release_year 2023 (aka newly established). \n",
    "tbl_2023 = tbl.filter(_.Release_Year == 2023).mutate(geom=_.geom.buffer(buffer)) \n",
    "tbl_2024 = tbl.filter(_.Release_Year == 2024)\n",
    "intersects = tbl_2024.anti_join(tbl_2023, _.geom.intersects(tbl_2023.geom))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a59c976b-3c36-40f9-a15b-cefcd155c647",
   "metadata": {},
   "outputs": [],
   "source": [
    "%%time\n",
    "\n",
    "new2024 = intersects.select(\"OBJECTID\").mutate(established = 2024) # saving IDs to join on\n",
    "\n",
    "ca = (conn\n",
    "      .read_parquet(ca_parquet)\n",
    "      .cast({\"SHAPE\": \"geometry\"})\n",
    "      .mutate(area = _.SHAPE.area())\n",
    "      .filter(_.Release_Year == 2024) # having both 2023 and 2024 is redudant since 2024 is the superset.\n",
    "      .left_join(new2024, \"OBJECTID\") # newly established 2024 polygons \n",
    "      .mutate(established=_.established.fill_null(2023)) \n",
    "      .mutate(geom = _.SHAPE.convert(\"epsg:3310\",\"epsg:4326\"))\n",
    "      .rename(name = \"cpad_PARK_NAME\", access_type = \"cpad_ACCESS_TYP\", manager = \"cpad_MNG_AGENCY\",\n",
    "              manager_type = \"cpad_MNG_AG_LEV\", id = \"OBJECTID\", type = \"TYPE\")\n",
    "      .mutate(manager = _.manager.substitute({\"\": \"Unknown\"})) \n",
    "      .mutate(manager_type = _.manager_type.substitute({\"\": \"Unknown\"}))\n",
    "      .mutate(access_type = _.access_type.substitute({\"\": \"Unknown Access\"}))\n",
    "      .mutate(name = _.name.substitute({\"\": \"Unknown\"}))\n",
    "      .mutate(manager_type = _.manager_type.substitute({\"Home Owners Association\": \"HOA\"}))\n",
    "      .mutate(Easement=_.Easement.cast(\"string\").substitute({\"0\": \"Fee\", \"1\": \"Easement\"}))\n",
    "      .select(_.established, _.reGAP, _.name, _.access_type, _.manager, _.manager_type,\n",
    "              _.Easement, _.Acres, _.id, _.type, _.geom)\n",
    "     )\n",
    "\n",
    "ca2024 = ca.execute()\n",
    "ca2024.to_parquet(\"ca2024-30m.parquet\")\n",
    "ca2024.to_file(\"ca2024-30m.geojson\") # tippecanoe can't parse geoparquet :-("
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cfac7aa4-e418-4d7c-91e0-04ff8eae804c",
   "metadata": {},
   "outputs": [],
   "source": [
    "## Upload to Huggingface\n",
    "# https://huggingface.co/datasets/boettiger-lab/ca-30x30/\n",
    "\n",
    "from huggingface_hub import HfApi, login\n",
    "import streamlit as st\n",
    "login(st.secrets[\"HF_TOKEN\"])\n",
    "api = HfApi()\n",
    "\n",
    "def hf_upload(file):\n",
    "    info = api.upload_file(\n",
    "            path_or_fileobj=file,\n",
    "            path_in_repo=file,\n",
    "            repo_id=\"boettiger-lab/ca-30x30\",\n",
    "            repo_type=\"dataset\",\n",
    "        )\n",
    "    \n",
    "hf_upload(\"ca2024-30m.parquet\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2df80e1d-6b94-4884-b9f5-d9c23d3ea028",
   "metadata": {
    "editable": true,
    "slideshow": {
     "slide_type": ""
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "import subprocess\n",
    "import os\n",
    "\n",
    "def generate_pmtiles(input_file, output_file, max_zoom=12):\n",
    "    # Ensure Tippecanoe is installed\n",
    "    if subprocess.call([\"which\", \"tippecanoe\"], stdout=subprocess.DEVNULL) != 0:\n",
    "        raise RuntimeError(\"Tippecanoe is not installed or not in PATH\")\n",
    "\n",
    "    # Construct the Tippecanoe command\n",
    "    command = [\n",
    "        \"tippecanoe\",\n",
    "        \"-o\", output_file,\n",
    "        \"-z\", str(max_zoom),\n",
    "        \"--drop-densest-as-needed\",\n",
    "        \"--extend-zooms-if-still-dropping\",\n",
    "        \"--force\",\n",
    "        input_file\n",
    "    ]\n",
    "\n",
    "    # Run Tippecanoe\n",
    "    try:\n",
    "        subprocess.run(command, check=True)\n",
    "        print(f\"Successfully generated PMTiles file: {output_file}\")\n",
    "    except subprocess.CalledProcessError as e:\n",
    "        print(f\"Error running Tippecanoe: {e}\")\n",
    "\n",
    "generate_pmtiles(\"ca2024-30m.geojson\", \"ca2024-30m-tippe.pmtiles\")\n",
    "hf_upload(\"ca2024-30m-tippe.pmtiles\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}