cassiebuhler commited on
Commit
69ae112
·
1 Parent(s): 607b7f5

zonal stats, rounding.

Browse files
Files changed (1) hide show
  1. preprocess_part2.ipynb +1165 -0
preprocess_part2.ipynb ADDED
@@ -0,0 +1,1165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "39bf1de3-cba6-475a-a988-ad48e5af4a04",
6
+ "metadata": {},
7
+ "source": [
8
+ "# Get zonal stats "
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": null,
14
+ "id": "ba047a55-642d-4c27-a367-5f35f4406218",
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "import ibis\n",
19
+ "import ibis.selectors as s\n",
20
+ "from ibis import _\n",
21
+ "import fiona\n",
22
+ "import geopandas as gpd\n",
23
+ "import rioxarray\n",
24
+ "from shapely.geometry import box\n",
25
+ "\n",
26
+ "import rasterio\n",
27
+ "from rasterio.mask import mask\n",
28
+ "from rasterstats import zonal_stats\n",
29
+ "import pandas as pd\n",
30
+ "from joblib import Parallel, delayed\n",
31
+ "\n",
32
+ "con = ibis.duckdb.connect()\n",
33
+ "con.load_extension(\"spatial\")\n",
34
+ "threads = -1"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "id": "8b5656db-2d1d-4ca8-826d-7588126e52e8",
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "# cropping US data to only CA \n",
45
+ "def crop_raster_to_bounds(tif_file, vector_gdf):\n",
46
+ " with rasterio.open(tif_file) as src:\n",
47
+ " # Get California's bounding box in the same CRS as the raster\n",
48
+ " california_bounds = vector_gdf.total_bounds\n",
49
+ " california_bounds = rasterio.coords.BoundingBox(\n",
50
+ " *california_bounds\n",
51
+ " )\n",
52
+ " # Crop the raster to the California bounding box\n",
53
+ " out_image, out_transform = mask(src, [california_bounds], crop=True)\n",
54
+ " out_meta = src.meta.copy()\n",
55
+ " out_meta.update({\n",
56
+ " \"driver\": \"GTiff\",\n",
57
+ " \"height\": out_image.shape[1],\n",
58
+ " \"width\": out_image.shape[2],\n",
59
+ " \"transform\": out_transform\n",
60
+ " })\n",
61
+ " print(\"Unique values in cropped raster:\", np.unique(out_image))\n",
62
+ "\n",
63
+ " return out_image, out_meta\n"
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "code",
68
+ "execution_count": null,
69
+ "id": "9a0e3446-16ac-40b0-9e34-db0157038c5a",
70
+ "metadata": {},
71
+ "outputs": [],
72
+ "source": [
73
+ "def big_zonal_stats(vec_file, tif_file, stats, col_name, n_jobs, verbose=10, timeout=10000):\n",
74
+ " gdf = gpd.read_parquet(vec_file)\n",
75
+ " if gdf.crs is None:\n",
76
+ " gdf = gdf.set_crs(\"EPSG:4326\")\n",
77
+ " gdf = gdf.rename(columns={\"geom\": \"geometry\"})\n",
78
+ " gdf = gdf.set_geometry(\"geometry\")\n",
79
+ " gdf = gdf[gdf[\"geometry\"].notna()].copy()\n",
80
+ "\n",
81
+ " with rasterio.open(tif_file) as src:\n",
82
+ " raster_crs = src.crs\n",
83
+ " gdf = gdf.to_crs(raster_crs) # Transform vector to raster CRS\n",
84
+ " \n",
85
+ " # CA bounding box + convert it to a polygon in raster CRS\n",
86
+ " california_polygon = box(*gdf.total_bounds)\n",
87
+ " \n",
88
+ " out_image, out_transform = mask(src, [california_polygon], crop=True, nodata=src.nodata)\n",
89
+ "\n",
90
+ " # If raster is 3D, select the first band\n",
91
+ " if out_image.ndim == 3:\n",
92
+ " out_image = out_image[0]\n",
93
+ "\n",
94
+ " # compute zonal statistics for each geometry slice\n",
95
+ " def get_stats(geom_slice):\n",
96
+ " geom = [geom_slice.geometry]\n",
97
+ " stats_result = zonal_stats(\n",
98
+ " geom, out_image, stats=stats, affine=out_transform, all_touched=True, nodata=src.nodata\n",
99
+ " )\n",
100
+ " return stats_result[0] if stats_result and stats_result[0].get(\"mean\") is not None else {'mean': None}\n",
101
+ "\n",
102
+ " output = [get_stats(row) for row in gdf.itertuples()]\n",
103
+ " gdf[col_name] = [res['mean'] for res in output]\n",
104
+ "\n",
105
+ " return gdf"
106
+ ]
107
+ },
108
+ {
109
+ "cell_type": "code",
110
+ "execution_count": null,
111
+ "id": "ce66bae6-bac5-4837-9b01-fde16a00c303",
112
+ "metadata": {},
113
+ "outputs": [],
114
+ "source": [
115
+ "# getting local copies of data \n",
116
+ "# aws s3 cp s3://vizzuality/hfp-100/hfp_2021_100m_v1-2_cog.tif . --endpoint-url=https://data.source.coop\n",
117
+ "# aws s3 cp s3://vizzuality/lg-land-carbon-data/natcrop_bii_100m_cog.tif . --endpoint-url=https://data.source.coop\n",
118
+ "# aws s3 cp s3://vizzuality/lg-land-carbon-data/natcrop_fii_100m_cog.tif . --endpoint-url=https://data.source.coop\n",
119
+ "# aws s3 cp s3://vizzuality/lg-land-carbon-data/natcrop_expansion_100m_cog.tif . --endpoint-url=https://data.source.coop\n",
120
+ "# aws s3 cp s3://vizzuality/lg-land-carbon-data/natcrop_reduction_100m_cog.tif . --endpoint-url=https://data.source.coop\n",
121
+ "# aws s3 cp s3://cboettig/carbon/cogs/irrecoverable_c_total_2018.tif . --endpoint-url=https://data.source.coop\n",
122
+ "# aws s3 cp s3://cboettig/carbon/cogs/manageable_c_total_2018.tif . --endpoint-url=https://data.source.coop\n",
123
+ "# ! aws s3 cp s3://cboettig/justice40/disadvantaged-communities.parquet . --endpoint-url=https://data.source.coop\n",
124
+ "# minio/shared-biodiversity/redlist/cog/combined_sr_2022.tif\n",
125
+ "# /home/rstudio/minio/shared-biodiversity/redlist/cog/combined_rwr_2022.tif\n",
126
+ "# ! aws s3 cp s3://cboettig/social-vulnerability/svi2020_us_tract.parquet . --endpoint-url=https://data.source.coop\n"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "markdown",
131
+ "id": "531e7f88-1ce1-4027-b0ab-aab597e9a2b2",
132
+ "metadata": {},
133
+ "source": [
134
+ "# Biodiversity Data"
135
+ ]
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "execution_count": null,
140
+ "id": "66dec912-ad8a-41cf-a5c2-6ec9cc350984",
141
+ "metadata": {},
142
+ "outputs": [],
143
+ "source": [
144
+ "%%time\n",
145
+ "tif_file = 'SpeciesRichness_All.tif'\n",
146
+ "vec_file = \"/home/rstudio/github/ca-30x30/ca2024-30m.parquet\"\n",
147
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"richness\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "execution_count": null,
153
+ "id": "b081ec1a-ea91-485e-95f9-12cd06c2002a",
154
+ "metadata": {},
155
+ "outputs": [],
156
+ "source": [
157
+ "%%time\n",
158
+ "tif_file = 'RSR_All.tif'\n",
159
+ "vec_file = './cpad-stats-temp.parquet'\n",
160
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],\n",
161
+ " col_name = \"rsr\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")"
162
+ ]
163
+ },
164
+ {
165
+ "cell_type": "code",
166
+ "execution_count": null,
167
+ "id": "d5133f36-404e-4f6a-a90b-eb5f098e6f06",
168
+ "metadata": {},
169
+ "outputs": [],
170
+ "source": [
171
+ "%%time\n",
172
+ "tif_file = 'combined_sr_2022.tif'\n",
173
+ "vec_file = './cpad-stats-temp.parquet'\n",
174
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"all_species_richness\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
175
+ ]
176
+ },
177
+ {
178
+ "cell_type": "code",
179
+ "execution_count": null,
180
+ "id": "2ce56a66-34e3-4f61-95ae-65d1f06bc468",
181
+ "metadata": {},
182
+ "outputs": [],
183
+ "source": [
184
+ "%%time\n",
185
+ "tif_file = 'combined_rwr_2022.tif'\n",
186
+ "vec_file = './cpad-stats-temp.parquet'\n",
187
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"all_species_rwr\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
188
+ ]
189
+ },
190
+ {
191
+ "cell_type": "markdown",
192
+ "id": "6c129894-3775-4842-8767-f81a8f626d2c",
193
+ "metadata": {},
194
+ "source": [
195
+ "# Carbon Data"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": null,
201
+ "id": "19c3e402-8712-450f-b3dd-af9d0c01689c",
202
+ "metadata": {},
203
+ "outputs": [],
204
+ "source": [
205
+ "%%time\n",
206
+ "tif_file = 'irrecoverable_c_total_2018.tif'\n",
207
+ "vec_file = './cpad-stats-temp.parquet'\n",
208
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"irrecoverable_carbon\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n",
209
+ "\n"
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "code",
214
+ "execution_count": null,
215
+ "id": "c55c777a-48ce-4403-a171-cfc0d2351df6",
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": [
219
+ "%%time\n",
220
+ "tif_file = 'manageable_c_total_2018.tif'\n",
221
+ "vec_file = './cpad-stats-temp.parquet'\n",
222
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"manageable_carbon\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
223
+ ]
224
+ },
225
+ {
226
+ "cell_type": "code",
227
+ "execution_count": null,
228
+ "id": "33ac0fb7-2cde-448d-a634-1973e34ac14f",
229
+ "metadata": {},
230
+ "outputs": [],
231
+ "source": [
232
+ "%%time\n",
233
+ "tif_file = 'deforest_carbon_100m_cog.tif'\n",
234
+ "vec_file = './cpad-stats-temp.parquet'\n",
235
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], \n",
236
+ " col_name = \"deforest_carbon\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
237
+ ]
238
+ },
239
+ {
240
+ "cell_type": "markdown",
241
+ "id": "096c00a8-57af-41d7-93cc-85d85414aa4f",
242
+ "metadata": {},
243
+ "source": [
244
+ "# Human Impact Data"
245
+ ]
246
+ },
247
+ {
248
+ "cell_type": "code",
249
+ "execution_count": null,
250
+ "id": "d2a8c10f-e94b-4eef-940f-2af9599edee1",
251
+ "metadata": {},
252
+ "outputs": [],
253
+ "source": [
254
+ "%%time\n",
255
+ "tif_file = 'natcrop_bii_100m_cog.tif'\n",
256
+ "vec_file = './cpad-stats-temp.parquet'\n",
257
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], \n",
258
+ " col_name = \"biodiversity_intactness_loss\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
259
+ ]
260
+ },
261
+ {
262
+ "cell_type": "code",
263
+ "execution_count": null,
264
+ "id": "1c318f39-7ca0-4f3c-80fb-73f72202e4e0",
265
+ "metadata": {},
266
+ "outputs": [],
267
+ "source": [
268
+ "%%time\n",
269
+ "tif_file = 'natcrop_fii_100m_cog.tif'\n",
270
+ "vec_file = './cpad-stats-temp.parquet'\n",
271
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],\n",
272
+ " col_name = \"forest_integrity_loss\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n",
273
+ "\n"
274
+ ]
275
+ },
276
+ {
277
+ "cell_type": "code",
278
+ "execution_count": null,
279
+ "id": "aef9070a-c87a-463e-81b8-3cc6c5c9d484",
280
+ "metadata": {},
281
+ "outputs": [],
282
+ "source": [
283
+ "%%time\n",
284
+ "tif_file = 'natcrop_expansion_100m_cog.tif'\n",
285
+ "vec_file = './cpad-stats-temp.parquet'\n",
286
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"crop_expansion\", n_jobs=threads, verbose=0)\n",
287
+ "gpd.GeoDataFrame(df, geometry=\"geometry\").to_parquet(\"cpad-stats-temp.parquet\")\n"
288
+ ]
289
+ },
290
+ {
291
+ "cell_type": "code",
292
+ "execution_count": null,
293
+ "id": "d94f937b-b32c-4de1-b4ac-93ce33f0919f",
294
+ "metadata": {},
295
+ "outputs": [],
296
+ "source": [
297
+ "%%time\n",
298
+ "tif_file = 'natcrop_reduction_100m_cog.tif'\n",
299
+ "vec_file = './cpad-stats-temp.parquet'\n",
300
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"crop_reduction\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
301
+ ]
302
+ },
303
+ {
304
+ "cell_type": "code",
305
+ "execution_count": null,
306
+ "id": "6bdaba61-30c1-49d6-a4e6-db68f1daafa3",
307
+ "metadata": {},
308
+ "outputs": [],
309
+ "source": [
310
+ "%%time\n",
311
+ "tif_file = 'hfp_2021_100m_v1-2_cog.tif'\n",
312
+ "vec_file = './cpad-stats-temp.parquet'\n",
313
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"human_impact\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
314
+ ]
315
+ },
316
+ {
317
+ "cell_type": "markdown",
318
+ "id": "f8e037d4-7a34-42bc-941f-0c09ee80ef3b",
319
+ "metadata": {},
320
+ "source": [
321
+ "# Need to convert SVI & Justice40 files to tif"
322
+ ]
323
+ },
324
+ {
325
+ "cell_type": "code",
326
+ "execution_count": null,
327
+ "id": "c4a19013-65f1-4eef-be2d-0cf1be3d0f7f",
328
+ "metadata": {},
329
+ "outputs": [],
330
+ "source": [
331
+ "import geopandas as gpd\n",
332
+ "import numpy as np\n",
333
+ "import rasterio\n",
334
+ "from rasterio.features import rasterize\n",
335
+ "from rasterio.transform import from_bounds\n",
336
+ "\n",
337
+ "def get_geotiff(gdf, output_file,col):\n",
338
+ " gdf = gdf.set_geometry(\"geometry\")\n",
339
+ " gdf = gdf.set_crs(\"EPSG:4326\")\n",
340
+ " print(gdf.crs)\n",
341
+ "\n",
342
+ " # Set raster properties\n",
343
+ " minx, miny, maxx, maxy = gdf.total_bounds # Get the bounds of the geometry\n",
344
+ " pixel_size = 0.01 # Define the pixel size in units of the CRS\n",
345
+ " width = int((maxx - minx) / pixel_size)\n",
346
+ " height = int((maxy - miny) / pixel_size)\n",
347
+ " transform = from_bounds(minx, miny, maxx, maxy, width, height)\n",
348
+ " \n",
349
+ " # Define rasterization with continuous values\n",
350
+ " shapes = ((geom, value) for geom, value in zip(gdf.geometry, gdf[col]))\n",
351
+ " raster = rasterize(\n",
352
+ " shapes,\n",
353
+ " out_shape=(height, width),\n",
354
+ " transform=transform,\n",
355
+ " fill=0.0, # Background value for areas outside the geometry\n",
356
+ " dtype=\"float32\" # Set data type to handle continuous values\n",
357
+ " )\n",
358
+ " print(\"Unique values in raster:\", np.unique(raster))\n",
359
+ "\n",
360
+ " # Define GeoTIFF metadata\n",
361
+ " out_meta = {\n",
362
+ " \"driver\": \"GTiff\",\n",
363
+ " \"height\": height,\n",
364
+ " \"width\": width,\n",
365
+ " \"count\": 1,\n",
366
+ " \"dtype\": raster.dtype,\n",
367
+ " \"crs\": gdf.crs,\n",
368
+ " \"transform\": transform,\n",
369
+ " \"compress\": \"deflate\" # Use compression to reduce file size\n",
370
+ " }\n",
371
+ " \n",
372
+ " # Write to a GeoTIFF file with COG options\n",
373
+ " with rasterio.open(output_file, \"w\", **out_meta) as dest:\n",
374
+ " dest.write(raster, 1)\n",
375
+ " dest.build_overviews([2, 4, 8, 16], rasterio.enums.Resampling.average)\n",
376
+ " dest.update_tags(1, TIFFTAG_RESOLUTION_UNIT=\"Meter\")\n"
377
+ ]
378
+ },
379
+ {
380
+ "cell_type": "markdown",
381
+ "id": "f4925a74-5ed2-49a4-845b-6a0f0398a43e",
382
+ "metadata": {},
383
+ "source": [
384
+ "# SVI"
385
+ ]
386
+ },
387
+ {
388
+ "cell_type": "code",
389
+ "execution_count": null,
390
+ "id": "4e678f01-73af-4f99-a565-e9b7f04d9547",
391
+ "metadata": {},
392
+ "outputs": [],
393
+ "source": [
394
+ "# clean up SVI data\n",
395
+ "svi_df = (con\n",
396
+ " .read_parquet(\"svi2020_us_tract.parquet\")\n",
397
+ " .select(\"RPL_THEMES\",\"RPL_THEME1\",\"RPL_THEME2\",\"RPL_THEME3\",\"RPL_THEME4\",\"Shape\")\n",
398
+ " .rename(SVI = \"RPL_THEMES\", socioeconomic = \"RPL_THEME1\", \n",
399
+ " household_char = \"RPL_THEME2\", racial_ethnic_minority = \"RPL_THEME3\",\n",
400
+ " housing_transit = \"RPL_THEME4\", geometry = \"Shape\")\n",
401
+ ".cast({\"geometry\":\"geometry\"})\n",
402
+ ")\n",
403
+ "svi_df.execute().to_parquet(\"svi2020_us_tract_clean.parquet\")\n"
404
+ ]
405
+ },
406
+ {
407
+ "cell_type": "code",
408
+ "execution_count": null,
409
+ "id": "c5046d6b-9798-46d3-a1bc-548e29414007",
410
+ "metadata": {},
411
+ "outputs": [],
412
+ "source": [
413
+ "gdf = gpd.read_parquet(\"svi2020_us_tract_clean.parquet\")\n",
414
+ "svi = gdf[['SVI','geometry']]\n",
415
+ "socio = gdf[['socioeconomic','geometry']]\n",
416
+ "house = gdf[['household_char','geometry']]\n",
417
+ "minority = gdf[['racial_ethnic_minority','geometry']]\n",
418
+ "transit = gdf[['housing_transit','geometry']]\n",
419
+ "\n",
420
+ "#convert SVI parquet to tif\n",
421
+ "get_geotiff(svi,\"svi.tif\",\"SVI\")\n",
422
+ "get_geotiff(socio,\"svi_socioeconomic.tif\",\"socioeconomic\")\n",
423
+ "get_geotiff(house,\"svi_household.tif\",\"household_char\")\n",
424
+ "get_geotiff(minority,\"svi_minority.tif\",\"racial_ethnic_minority\")\n",
425
+ "get_geotiff(transit,\"svi_transit.tif\",\"housing_transit\")"
426
+ ]
427
+ },
428
+ {
429
+ "cell_type": "code",
430
+ "execution_count": null,
431
+ "id": "6a36b77f-d0be-45bd-9318-da4b57eaf353",
432
+ "metadata": {},
433
+ "outputs": [],
434
+ "source": [
435
+ "%%time\n",
436
+ "tif_file = 'svi.tif'\n",
437
+ "vec_file = './cpad-stats-temp.parquet'\n",
438
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"SVI\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n",
439
+ "\n"
440
+ ]
441
+ },
442
+ {
443
+ "cell_type": "code",
444
+ "execution_count": null,
445
+ "id": "05ef74e2-3f23-4f69-8cd3-8862cb73a259",
446
+ "metadata": {},
447
+ "outputs": [],
448
+ "source": [
449
+ "%%time\n",
450
+ "vec_file = './cpad-stats-temp.parquet'\n",
451
+ "tif_file = 'svi_socioeconomic.tif'\n",
452
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"socioeconomic_status\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n",
453
+ "\n"
454
+ ]
455
+ },
456
+ {
457
+ "cell_type": "code",
458
+ "execution_count": null,
459
+ "id": "23417a03-38c2-4b31-8340-f08ec8a11631",
460
+ "metadata": {},
461
+ "outputs": [],
462
+ "source": [
463
+ "%%time\n",
464
+ "vec_file = './cpad-stats-temp.parquet'\n",
465
+ "tif_file = 'svi_household.tif'\n",
466
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"household_char\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n",
467
+ "\n"
468
+ ]
469
+ },
470
+ {
471
+ "cell_type": "code",
472
+ "execution_count": null,
473
+ "id": "de86d7f0-6cdc-4d05-bdee-d9803cbd83bd",
474
+ "metadata": {},
475
+ "outputs": [],
476
+ "source": [
477
+ "%%time\n",
478
+ "vec_file = './cpad-stats-temp.parquet'\n",
479
+ "tif_file = 'svi_minority.tif'\n",
480
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"racial_ethnic_minority\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
481
+ ]
482
+ },
483
+ {
484
+ "cell_type": "code",
485
+ "execution_count": null,
486
+ "id": "0c49dd50-7dd3-4240-9af8-3e32ec656bc0",
487
+ "metadata": {},
488
+ "outputs": [],
489
+ "source": [
490
+ "%%time\n",
491
+ "vec_file = './cpad-stats-temp.parquet'\n",
492
+ "tif_file = 'svi_transit.tif'\n",
493
+ "df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = \"housing_transit\", n_jobs=threads, verbose=0).to_parquet(\"cpad-stats-temp.parquet\")\n"
494
+ ]
495
+ },
496
+ {
497
+ "cell_type": "markdown",
498
+ "id": "ff4b6604-9828-4882-90bd-554c21f5c6e6",
499
+ "metadata": {},
500
+ "source": [
501
+ "# Justice40 "
502
+ ]
503
+ },
504
+ {
505
+ "cell_type": "code",
506
+ "execution_count": null,
507
+ "id": "3678a91f-72f7-4339-a409-a97776cba043",
508
+ "metadata": {},
509
+ "outputs": [],
510
+ "source": [
511
+ "#clean up\n",
512
+ "justice40 = (con\n",
513
+ " .read_parquet(\"disadvantaged-communities.parquet\")\n",
514
+ " .rename(geometry = \"SHAPE\",justice40=\"Disadvan\")\n",
515
+ " .filter(_.StateName == \"California\")\n",
516
+ " .mutate(geometry = _.geometry.convert(\"ESRI:102039\",\"EPSG:4326\"))\n",
517
+ " .select(\"justice40\",\"geometry\")\n",
518
+ " )\n",
519
+ "justice40.execute().to_parquet(\"ca_justice40.parquet\")"
520
+ ]
521
+ },
522
+ {
523
+ "cell_type": "code",
524
+ "execution_count": null,
525
+ "id": "8faa425f-6f9c-4189-a53a-24dd0250c539",
526
+ "metadata": {},
527
+ "outputs": [],
528
+ "source": [
529
+ "# #justice40 is either 0 or 1, so we want to get the percentage of polygon where justice40 = 1. \n",
530
+ "\n",
531
+ "def big_zonal_stats_binary(vec_file, justice40_file, col_name,projected_crs=\"EPSG:3310\"):\n",
532
+ " # Read both vector files as GeoDataFrames\n",
533
+ " gdf = gpd.read_parquet(vec_file)\n",
534
+ " justice40_gdf = gpd.read_parquet(justice40_file)\n",
535
+ " \n",
536
+ " # Set CRS if not already set (assuming both should be in EPSG:4326, modify if needed)\n",
537
+ " if gdf.crs is None:\n",
538
+ " gdf = gdf.set_crs(\"EPSG:4326\")\n",
539
+ " if justice40_gdf.crs is None:\n",
540
+ " justice40_gdf = justice40_gdf.set_crs(\"EPSG:4326\")\n",
541
+ " # Ensure both GeoDataFrames are in the same CRS and reproject to a projected CRS for area calculations\n",
542
+ " gdf = gdf.to_crs(projected_crs)\n",
543
+ " justice40_gdf = justice40_gdf.to_crs(projected_crs)\n",
544
+ " \n",
545
+ " # Ensure both GeoDataFrames are in the same CRS\n",
546
+ " gdf = gdf.to_crs(justice40_gdf.crs)\n",
547
+ " \n",
548
+ " # Filter justice40 polygons where justice40 == 1\n",
549
+ " justice40_gdf = justice40_gdf[justice40_gdf['justice40'] == 1].copy()\n",
550
+ " \n",
551
+ " # Prepare a list to hold percentage of justice40 == 1 for each polygon\n",
552
+ " percentages = []\n",
553
+ " \n",
554
+ " # Iterate over each polygon in the main GeoDataFrame\n",
555
+ " for geom in gdf.geometry:\n",
556
+ " # Find intersecting justice40 polygons\n",
557
+ " justice40_intersections = justice40_gdf[justice40_gdf.intersects(geom)].copy()\n",
558
+ " \n",
559
+ " # Calculate the intersection area\n",
560
+ " if not justice40_intersections.empty:\n",
561
+ " justice40_intersections['intersection'] = justice40_intersections.intersection(geom)\n",
562
+ " total_intersection_area = justice40_intersections['intersection'].area.sum()\n",
563
+ " \n",
564
+ " # Calculate percentage based on original polygon's area\n",
565
+ " percentage_1 = (total_intersection_area / geom.area) \n",
566
+ " else:\n",
567
+ " percentage_1 = 0.0 # No intersection with justice40 == 1 polygons\n",
568
+ " \n",
569
+ " # Append result\n",
570
+ " percentages.append(percentage_1)\n",
571
+ " \n",
572
+ " # Add results to the original GeoDataFrame\n",
573
+ " gdf[col_name] = percentages\n",
574
+ " return gdf\n",
575
+ "\n",
576
+ "\n"
577
+ ]
578
+ },
579
+ {
580
+ "cell_type": "code",
581
+ "execution_count": null,
582
+ "id": "fe80fc28-73ce-4a26-9925-851c2798e467",
583
+ "metadata": {},
584
+ "outputs": [],
585
+ "source": [
586
+ "%%time\n",
587
+ "vec_file = './cpad-stats-temp.parquet'\n",
588
+ "\n",
589
+ "df = big_zonal_stats_binary(vec_file, \"ca_justice40.parquet\", col_name=\"percent_disadvantaged\")\n",
590
+ "df.to_parquet(\"cpad-stats-temp.parquet\")\n"
591
+ ]
592
+ },
593
+ {
594
+ "cell_type": "markdown",
595
+ "id": "5438a4f4-377e-41fe-800b-8ffc1f33caa0",
596
+ "metadata": {},
597
+ "source": [
598
+ "# Fire"
599
+ ]
600
+ },
601
+ {
602
+ "cell_type": "code",
603
+ "execution_count": null,
604
+ "id": "4bd83b4d-01df-49d8-99e1-6740d365c833",
605
+ "metadata": {},
606
+ "outputs": [],
607
+ "source": [
608
+ "import geopandas as gpd\n",
609
+ "\n",
610
+ "#get percentage of polygon with fire occurrence \n",
611
+ "def fire_stats(file_name, fire_df, col_name):\n",
612
+ " gdf = gpd.read_parquet(file_name)\n",
613
+ " \n",
614
+ " percentages = []\n",
615
+ " # Find all fires that intersect with the current protected area \n",
616
+ " for geom in gdf.geometry:\n",
617
+ " fire_intersections = fire_df[fire_df.intersects(geom)].copy()\n",
618
+ " if not fire_intersections.empty:\n",
619
+ " # If there is only one intersecting fire, compute the intersection area\n",
620
+ " if len(fire_intersections) == 1:\n",
621
+ " intersection_area = fire_intersections.geometry.iloc[0].intersection(geom).area\n",
622
+ " else:\n",
623
+ " # If there are multiple intersecting fires, use a union to avoid double-counting\n",
624
+ " unioned_fires = fire_intersections.unary_union\n",
625
+ " intersection_area = unioned_fires.intersection(geom).area\n",
626
+ " \n",
627
+ " percentage_1 = round((intersection_area / geom.area),3)\n",
628
+ " else:\n",
629
+ " percentage_1 = 0.0 \n",
630
+ "\n",
631
+ " percentages.append(percentage_1)\n",
632
+ " \n",
633
+ " gdf[col_name] = percentages\n",
634
+ " return gdf\n"
635
+ ]
636
+ },
637
+ {
638
+ "cell_type": "code",
639
+ "execution_count": null,
640
+ "id": "4ce35cea-8897-42c0-b1f6-01b414a5b556",
641
+ "metadata": {},
642
+ "outputs": [],
643
+ "source": [
644
+ "#historical fire perimeters \n",
645
+ "fire_20 = (con\n",
646
+ " .read_parquet(\"firep22_1.parquet\")\n",
647
+ " .rename(year = \"YEAR_\")\n",
648
+ " .filter(_.STATE == \"CA\", _.year != '')\n",
649
+ " .cast({\"year\":\"int\"})\n",
650
+ " .filter(_.year>=2003)\n",
651
+ " .select(\"year\",\"geometry\")\n",
652
+ " .mutate(\n",
653
+ " geometry=ibis.ifelse(\n",
654
+ " _.geometry.is_valid(),\n",
655
+ " _.geometry, # Keep the geometry if it's valid\n",
656
+ " _.geometry.buffer(0) # Apply buffer(0) to fix invalid geometries\n",
657
+ " )\n",
658
+ " )\n",
659
+ " )\n",
660
+ "fire_20.execute().to_parquet(\"ca-fire-20yrs.parquet\")\n",
661
+ "fire_10 = fire_20.filter(_.year>=2013)\n",
662
+ "fire_5 = fire_20.filter(_.year>=2018)\n",
663
+ "fire_2 = fire_20.filter(_.year>=2022)\n",
664
+ "\n",
665
+ "\n",
666
+ "fire_20_df = fire_20.execute().set_crs(\"EPSG:3310\")\n",
667
+ "fire_10_df = fire_10.execute().set_crs(\"EPSG:3310\")\n",
668
+ "fire_5_df = fire_5.execute().set_crs(\"EPSG:3310\")\n",
669
+ "fire_2_df = fire_2.execute().set_crs(\"EPSG:3310\")\n"
670
+ ]
671
+ },
672
+ {
673
+ "cell_type": "code",
674
+ "execution_count": null,
675
+ "id": "0a041210-6ffe-49b0-b4a7-3a9220acedb9",
676
+ "metadata": {},
677
+ "outputs": [],
678
+ "source": [
679
+ "#prescribed burns\n",
680
+ "rxburn_20 = (con\n",
681
+ " .read_parquet(\"rxburn22_1.parquet\")\n",
682
+ " .rename(year = \"YEAR_\")\n",
683
+ " .filter(_.STATE == \"CA\", _.year != ' ', _.year != '')\n",
684
+ " .cast({\"year\":\"int\"})\n",
685
+ " .filter(_.year>=2003)\n",
686
+ " .select(\"year\",\"geometry\")\n",
687
+ " .mutate(\n",
688
+ " geometry=ibis.ifelse(\n",
689
+ " _.geometry.is_valid(),\n",
690
+ " _.geometry, # Keep the geometry if it's valid\n",
691
+ " _.geometry.buffer(0) # Apply buffer(0) to fix invalid geometries\n",
692
+ " )\n",
693
+ " )\n",
694
+ " )\n",
695
+ "\n",
696
+ "rxburn_20.execute().to_parquet(\"ca-rxburn-20yrs.parquet\")\n",
697
+ "rxburn_10 = (rxburn_20.filter(_.year>=2013))\n",
698
+ "rxburn_5 = (rxburn_20.filter(_.year>=2018))\n",
699
+ "rxburn_2 = (rxburn_20.filter(_.year>=2022))\n",
700
+ "\n",
701
+ "rxburn_20_df = rxburn_20.execute().set_crs(\"EPSG:3310\")\n",
702
+ "rxburn_10_df = rxburn_10.execute().set_crs(\"EPSG:3310\")\n",
703
+ "rxburn_5_df = rxburn_5.execute().set_crs(\"EPSG:3310\")\n",
704
+ "rxburn_2_df = rxburn_2.execute().set_crs(\"EPSG:3310\")"
705
+ ]
706
+ },
707
+ {
708
+ "cell_type": "code",
709
+ "execution_count": null,
710
+ "id": "fc955b02-efc1-4ae3-b8e4-ea424d491a68",
711
+ "metadata": {},
712
+ "outputs": [],
713
+ "source": [
714
+ "# need to validate geometries, using epsg:3310 to match fire polygons\n",
715
+ "ca = (con\n",
716
+ " .read_parquet('cpad-stats-temp.parquet')\n",
717
+ " .mutate(geom = _.geom.convert(\"EPSG:4326\",\"EPSG:3310\"))\n",
718
+ " .mutate(\n",
719
+ " geometry=ibis.ifelse(\n",
720
+ " _.geom.is_valid(),\n",
721
+ " _.geom, # Keep the geometry if it's valid\n",
722
+ " _.geom.buffer(0) # Apply buffer(0) to fix invalid geometries\n",
723
+ " )\n",
724
+ " )\n",
725
+ " .drop('geom')\n",
726
+ " )\n",
727
+ "gdf = ca.execute()\n",
728
+ "gdf = gdf.set_crs('EPSG:3310')\n",
729
+ "gdf.to_parquet('cpad-stats-temp-EPSG3310.parquet')\n"
730
+ ]
731
+ },
732
+ {
733
+ "cell_type": "code",
734
+ "execution_count": null,
735
+ "id": "68e25266-efc8-4378-afc5-95c7a769ca81",
736
+ "metadata": {},
737
+ "outputs": [],
738
+ "source": [
739
+ "%%time\n",
740
+ "file_name = 'cpad-stats-temp-EPSG3310.parquet'\n",
741
+ "\n",
742
+ "names = [\"percent_fire_20yr\", \"percent_fire_10yr\", \"percent_fire_5yr\",\n",
743
+ " \"percent_fire_2yr\",\"percent_rxburn_20yr\", \"percent_rxburn_10yr\", \n",
744
+ " \"percent_rxburn_5yr\",\"percent_rxburn_2yr\"]\n",
745
+ "dfs = [fire_20_df,fire_10_df,fire_5_df,fire_2_df,rxburn_20_df,rxburn_10_df,rxburn_5_df,rxburn_2_df]\n",
746
+ "\n",
747
+ "for df,name in zip(dfs,names):\n",
748
+ " df_stat = fire_stats(file_name,df, col_name=name)\n",
749
+ " df_stat.to_parquet(file_name)"
750
+ ]
751
+ },
752
+ {
753
+ "cell_type": "code",
754
+ "execution_count": null,
755
+ "id": "cd4acb35-d1a3-4632-ae30-c6e3e923e94c",
756
+ "metadata": {},
757
+ "outputs": [],
758
+ "source": [
759
+ "#save data back to cpad-stats-temp\n",
760
+ "# (not really necessary but I want to reuse the same code)\n",
761
+ "ca = (con\n",
762
+ " .read_parquet(file_name)\n",
763
+ " .mutate(geometry = _.geometry.convert(\"EPSG:3310\",\"EPSG:4326\"))\n",
764
+ " )\n",
765
+ "gdf = ca.execute()\n",
766
+ "gdf= gdf.set_crs('EPSG:4326')\n",
767
+ "gdf.to_parquet(\"cpad-stats-temp.parquet\")\n",
768
+ "\n"
769
+ ]
770
+ },
771
+ {
772
+ "cell_type": "markdown",
773
+ "id": "e3083b85-1322-4188-ac08-e73c2570978c",
774
+ "metadata": {},
775
+ "source": [
776
+ "# Cleaning up + Rounding floats"
777
+ ]
778
+ },
779
+ {
780
+ "cell_type": "code",
781
+ "execution_count": null,
782
+ "id": "2e4de199-82d4-4e2b-8572-6fe19b57d1ee",
783
+ "metadata": {},
784
+ "outputs": [],
785
+ "source": [
786
+ "## clean up\n",
787
+ "con = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
788
+ "ca_geom = con.read_parquet(\"ca2024-30m.parquet\").cast({\"geom\":\"geometry\"}).select(\"id\",\"geom\")\n",
789
+ "\n",
790
+ "ca = (con\n",
791
+ " .read_parquet(\"cpad-stats-temp.parquet\")\n",
792
+ " .cast({\n",
793
+ " \"crop_expansion\": \"int64\",\n",
794
+ " \"crop_reduction\": \"int64\",\n",
795
+ " \"manageable_carbon\": \"int64\",\n",
796
+ " \"irrecoverable_carbon\": \"int64\"\n",
797
+ " })\n",
798
+ " .mutate(\n",
799
+ " richness=_.richness.round(3),\n",
800
+ " rsr=_.rsr.round(3),\n",
801
+ " all_species_rwr=_.all_species_rwr.round(3),\n",
802
+ " all_species_richness=_.all_species_richness.round(3),\n",
803
+ " percent_disadvantaged=(_.percent_disadvantaged).round(3),\n",
804
+ " svi=_.svi.round(3),\n",
805
+ " svi_socioeconomic_status=_.socioeconomic_status.round(3),\n",
806
+ " svi_household_char=_.household_char.round(3),\n",
807
+ " svi_racial_ethnic_minority=_.racial_ethnic_minority.round(3),\n",
808
+ " svi_housing_transit=_.housing_transit.round(3),\n",
809
+ " human_impact=_.human_impact.round(3),\n",
810
+ " deforest_carbon=_.deforest_carbon.round(3),\n",
811
+ " biodiversity_intactness_loss=_.biodiversity_intactness_loss.round(3),\n",
812
+ " forest_integrity_loss=_.forest_integrity_loss.round(3),\n",
813
+ " percent_fire_20yr = _.percent_fire_20yr.round(3),\n",
814
+ " percent_fire_10yr = _.percent_fire_10yr.round(3),\n",
815
+ " percent_fire_5yr = _.percent_fire_5yr.round(3),\n",
816
+ " percent_fire_2yr = _.percent_fire_2yr.round(3),\n",
817
+ " percent_rxburn_20yr = _.percent_rxburn_20yr.round(3),\n",
818
+ " percent_rxburn_10yr = _.percent_rxburn_10yr.round(3),\n",
819
+ " percent_rxburn_5yr = _.percent_rxburn_5yr.round(3),\n",
820
+ " percent_rxburn_2yr = _.percent_rxburn_2yr.round(3),\n",
821
+ " )\n",
822
+ " # only grabbing columns we are making charts with \n",
823
+ " .select('established', 'reGAP', 'name', 'access_type', 'manager', 'manager_type', 'Easement', 'Acres', 'id', 'type','richness', \n",
824
+ " 'rsr', 'irrecoverable_carbon', 'manageable_carbon', 'percent_fire_20yr', 'percent_fire_10yr', 'percent_fire_5yr','percent_fire_2yr',\n",
825
+ " 'percent_rxburn_20yr', 'percent_rxburn_10yr', 'percent_rxburn_5yr','percent_rxburn_2yr', 'percent_disadvantaged',\n",
826
+ " 'svi', 'svi_socioeconomic_status', 'svi_household_char', 'svi_racial_ethnic_minority',\n",
827
+ " 'svi_housing_transit', 'deforest_carbon','human_impact'\n",
828
+ " )\n",
829
+ " .join(ca_geom, \"id\", how=\"inner\")\n",
830
+ " )\n",
831
+ "\n",
832
+ "ca.head(5).execute()\n"
833
+ ]
834
+ },
835
+ {
836
+ "cell_type": "markdown",
837
+ "id": "3780de2c-3a68-442c-bb3b-64c792418979",
838
+ "metadata": {},
839
+ "source": [
840
+ "# Save as PMTiles + Upload data"
841
+ ]
842
+ },
843
+ {
844
+ "cell_type": "code",
845
+ "execution_count": null,
846
+ "id": "05c791c9-888a-483a-9dbb-a2ba7eb1bce2",
847
+ "metadata": {},
848
+ "outputs": [],
849
+ "source": [
850
+ "import subprocess\n",
851
+ "import os\n",
852
+ "from huggingface_hub import HfApi, login\n",
853
+ "import streamlit as st\n",
854
+ "\n",
855
+ "login(st.secrets[\"HF_TOKEN\"])\n",
856
+ "# api = HfApi(add_to_git_credential=False)\n",
857
+ "api = HfApi()\n",
858
+ "\n",
859
+ "def hf_upload(file, repo_id,repo_type):\n",
860
+ " info = api.upload_file(\n",
861
+ " path_or_fileobj=file,\n",
862
+ " path_in_repo=file,\n",
863
+ " repo_id=repo_id,\n",
864
+ " repo_type=repo_type,\n",
865
+ " )\n",
866
+ "def generate_pmtiles(input_file, output_file, max_zoom=12):\n",
867
+ " # Ensure Tippecanoe is installed\n",
868
+ " if subprocess.call([\"which\", \"tippecanoe\"], stdout=subprocess.DEVNULL) != 0:\n",
869
+ " raise RuntimeError(\"Tippecanoe is not installed or not in PATH\")\n",
870
+ "\n",
871
+ " # Construct the Tippecanoe command\n",
872
+ " command = [\n",
873
+ " \"tippecanoe\",\n",
874
+ " \"-o\", output_file,\n",
875
+ " \"-zg\",\n",
876
+ " \"--extend-zooms-if-still-dropping\",\n",
877
+ " \"--force\",\n",
878
+ " \"--projection\", \"EPSG:4326\", \n",
879
+ " \"-L\",\"layer:\"+input_file,\n",
880
+ " ]\n",
881
+ " # Run Tippecanoe\n",
882
+ " try:\n",
883
+ " subprocess.run(command, check=True)\n",
884
+ " print(f\"Successfully generated PMTiles file: {output_file}\")\n",
885
+ " except subprocess.CalledProcessError as e:\n",
886
+ " print(f\"Error running Tippecanoe: {e}\")\n",
887
+ "\n"
888
+ ]
889
+ },
890
+ {
891
+ "cell_type": "code",
892
+ "execution_count": null,
893
+ "id": "1f2d179d-6d47-4e84-83c6-7cb3d969fc00",
894
+ "metadata": {},
895
+ "outputs": [],
896
+ "source": [
897
+ "gdf = ca.execute().set_crs(\"EPSG:4326\")\n",
898
+ "gdf.to_file(\"cpad-stats.geojson\")\n",
899
+ "\n",
900
+ "generate_pmtiles(\"cpad-stats.geojson\", \"cpad-stats.pmtiles\")\n",
901
+ "hf_upload(\"cpad-stats.pmtiles\", \"boettiger-lab/ca-30x30\",\"dataset\")\n",
902
+ "\n",
903
+ "gdf.to_parquet(\"cpad-stats.parquet\")\n",
904
+ "hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"dataset\")\n",
905
+ "hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"space\")\n",
906
+ "\n"
907
+ ]
908
+ },
909
+ {
910
+ "cell_type": "markdown",
911
+ "id": "09467342-c160-413b-9cdc-31a4bec968cf",
912
+ "metadata": {},
913
+ "source": [
914
+ "# Redoing fire polygons pmtiles to have each range be its own layer "
915
+ ]
916
+ },
917
+ {
918
+ "cell_type": "code",
919
+ "execution_count": null,
920
+ "id": "2161c50b-0328-474f-aa57-215e14fe33c2",
921
+ "metadata": {},
922
+ "outputs": [],
923
+ "source": [
924
+ "def generate_pmtiles(input_file1, input_file2, input_file3, input_file4, output_file, max_zoom=12):\n",
925
+ " # Ensure Tippecanoe is installed\n",
926
+ " if subprocess.call([\"which\", \"tippecanoe\"], stdout=subprocess.DEVNULL) != 0:\n",
927
+ " raise RuntimeError(\"Tippecanoe is not installed or not in PATH\")\n",
928
+ "\n",
929
+ " # Construct the Tippecanoe command\n",
930
+ " command = [\n",
931
+ " \"tippecanoe\",\n",
932
+ " \"-o\", output_file,\n",
933
+ " \"-zg\",\n",
934
+ " \"--extend-zooms-if-still-dropping\",\n",
935
+ " \"--force\",\n",
936
+ " \"--projection\", \"EPSG:4326\", \n",
937
+ " \"-L\",\"layer1:\"+input_file1,\n",
938
+ " \"-L\",\"layer2:\"+input_file2,\n",
939
+ " \"-L\",\"layer3:\"+input_file3,\n",
940
+ " \"-L\",\"layer4:\"+input_file4,\n",
941
+ "\n",
942
+ " ]\n",
943
+ " # Run Tippecanoe\n",
944
+ " try:\n",
945
+ " subprocess.run(command, check=True)\n",
946
+ " print(f\"Successfully generated PMTiles file: {output_file}\")\n",
947
+ " except subprocess.CalledProcessError as e:\n",
948
+ " print(f\"Error running Tippecanoe: {e}\")\n"
949
+ ]
950
+ },
951
+ {
952
+ "cell_type": "code",
953
+ "execution_count": null,
954
+ "id": "3a15d11f-ef32-4af3-8b72-b43acd43cf08",
955
+ "metadata": {},
956
+ "outputs": [],
957
+ "source": [
958
+ "rxburn_20 = (con\n",
959
+ " .read_parquet(\"rxburn22_1.parquet\")\n",
960
+ " .rename(year = \"YEAR_\")\n",
961
+ " .filter(_.STATE == \"CA\", _.year != ' ', _.year != '')\n",
962
+ " .cast({\"year\":\"int\"})\n",
963
+ " .filter(_.year>=2003)\n",
964
+ " .mutate(\n",
965
+ " geometry=ibis.ifelse(\n",
966
+ " _.geometry.is_valid(),\n",
967
+ " _.geometry, # Keep the geometry if it's valid\n",
968
+ " _.geometry.buffer(0) # Apply buffer(0) to fix invalid geometries\n",
969
+ " )\n",
970
+ " )\n",
971
+ " .mutate(geometry = _.geometry.convert(\"EPSG:3310\",\"EPSG:4326\"))\n",
972
+ " )\n",
973
+ "\n",
974
+ "rxburn_10 = (rxburn_20.filter(_.year>=2013))\n",
975
+ "rxburn_5 = (rxburn_20.filter(_.year>=2018))\n",
976
+ "rxburn_2 = (rxburn_20.filter(_.year>=2022))\n",
977
+ "\n",
978
+ "rxburn_20_df = rxburn_20.execute().set_crs(\"EPSG:4326\").to_file(\"rxburn_20.geojson\")\n",
979
+ "rxburn_10_df = rxburn_10.execute().set_crs(\"EPSG:4326\").to_file(\"rxburn_10.geojson\")\n",
980
+ "rxburn_5_df = rxburn_5.execute().set_crs(\"EPSG:4326\").to_file(\"rxburn_5.geojson\")\n",
981
+ "rxburn_2_df = rxburn_2.execute().set_crs(\"EPSG:4326\").to_file(\"rxburn_2.geojson\")\n",
982
+ "\n",
983
+ "\n",
984
+ "generate_pmtiles(\"rxburn_20.geojson\",\"rxburn_10.geojson\",\"rxburn_5.geojson\",\"rxburn_2.geojson\",\"cal_rxburn_2022.pmtiles\")\n",
985
+ "hf_upload(\"cal_rxburn_2022.pmtiles\", \"boettiger-lab/ca-30x30\",\"dataset\")\n"
986
+ ]
987
+ },
988
+ {
989
+ "cell_type": "code",
990
+ "execution_count": null,
991
+ "id": "1220c348-c68b-4475-ba0f-ef563fea7345",
992
+ "metadata": {},
993
+ "outputs": [],
994
+ "source": [
995
+ "fire_20 = (con\n",
996
+ " .read_parquet(\"firep22_1.parquet\")\n",
997
+ " .rename(year = \"YEAR_\")\n",
998
+ " .filter(_.STATE == \"CA\", _.year != '')\n",
999
+ " .cast({\"year\":\"int\"})\n",
1000
+ " .filter(_.year>=2003)\n",
1001
+ " .select(\"year\",\"geometry\")\n",
1002
+ " .mutate(\n",
1003
+ " geometry=ibis.ifelse(\n",
1004
+ " _.geometry.is_valid(),\n",
1005
+ " _.geometry, # Keep the geometry if it's valid\n",
1006
+ " _.geometry.buffer(0) # Apply buffer(0) to fix invalid geometries\n",
1007
+ " )\n",
1008
+ " )\n",
1009
+ " .mutate(geometry = _.geometry.convert(\"EPSG:3310\",\"EPSG:4326\"))\n",
1010
+ " )\n",
1011
+ "\n",
1012
+ "fire_10 = (fire_20.filter(_.year>=2013))\n",
1013
+ "fire_5 = (fire_20.filter(_.year>=2018))\n",
1014
+ "fire_2 = (fire_20.filter(_.year>=2022))\n",
1015
+ "\n",
1016
+ "fire_20_df = fire_20.execute().set_crs(\"EPSG:4326\").to_file(\"fire_20.geojson\")\n",
1017
+ "fire_10_df = fire_10.execute().set_crs(\"EPSG:4326\").to_file(\"fire_10.geojson\")\n",
1018
+ "fire_5_df = fire_5.execute().set_crs(\"EPSG:4326\").to_file(\"fire_5.geojson\")\n",
1019
+ "fire_2_df = fire_2.execute().set_crs(\"EPSG:4326\").to_file(\"fire_2.geojson\")\n",
1020
+ "\n",
1021
+ "\n",
1022
+ "generate_pmtiles(\"fire_20.geojson\",\"fire_10.geojson\",\"fire_5.geojson\",\"fire_2.geojson\",\"cal_fire_2022.pmtiles\")\n",
1023
+ "hf_upload(\"cal_fire_2022.pmtiles\", \"boettiger-lab/ca-30x30\",\"dataset\")\n"
1024
+ ]
1025
+ },
1026
+ {
1027
+ "cell_type": "markdown",
1028
+ "id": "41ddf636-812e-4f0d-81db-64cf80cb2d4d",
1029
+ "metadata": {},
1030
+ "source": [
1031
+ "# Renaming variables, adding new columns, etc"
1032
+ ]
1033
+ },
1034
+ {
1035
+ "cell_type": "code",
1036
+ "execution_count": null,
1037
+ "id": "8eb85005-856f-4cc5-ba8d-e3efb24cdb32",
1038
+ "metadata": {},
1039
+ "outputs": [],
1040
+ "source": [
1041
+ "ca = (con\n",
1042
+ " .read_parquet(\"https://huggingface.co/spaces/boettiger-lab/ca-30x30/resolve/main/cpad-stats.parquet\")\n",
1043
+ " .rename(easement = \"Easement\")\n",
1044
+ " .rename(acres = \"Acres\")\n",
1045
+ " .drop('percent_fire_20yr', 'percent_fire_5yr','percent_fire_2yr','percent_rxburn_20yr', 'percent_rxburn_5yr','percent_rxburn_2yr')\n",
1046
+ " .cast({\"established\":\"str\"})\n",
1047
+ " .mutate(easement = _.easement.substitute({\"Easement\": \"True\", \"Fee\":\"False\"}),\n",
1048
+ " established = _.established.substitute({\"2023\": \"pre-2024\" }),\n",
1049
+ " )\n",
1050
+ " )"
1051
+ ]
1052
+ },
1053
+ {
1054
+ "cell_type": "code",
1055
+ "execution_count": null,
1056
+ "id": "78eef2b6-5f34-49b6-937e-4744fd64cea8",
1057
+ "metadata": {},
1058
+ "outputs": [],
1059
+ "source": [
1060
+ "hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"space\")\n"
1061
+ ]
1062
+ },
1063
+ {
1064
+ "cell_type": "code",
1065
+ "execution_count": null,
1066
+ "id": "652152fd-da31-44a0-bc50-9d3aa0fe6491",
1067
+ "metadata": {},
1068
+ "outputs": [],
1069
+ "source": [
1070
+ "gdf = ca.execute().set_crs(\"EPSG:4326\")\n",
1071
+ "gdf.to_parquet(\"cpad-stats.parquet\")\n",
1072
+ "# hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"dataset\")\n",
1073
+ "hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"space\")\n",
1074
+ "\n",
1075
+ "\n"
1076
+ ]
1077
+ },
1078
+ {
1079
+ "cell_type": "code",
1080
+ "execution_count": null,
1081
+ "id": "80537a24-da0c-4016-9d8b-736bce30eb40",
1082
+ "metadata": {},
1083
+ "outputs": [],
1084
+ "source": [
1085
+ "gdf.to_file(\"cpad-stats.geojson\")\n",
1086
+ "generate_pmtiles(\"cpad-stats.geojson\",\"cpad-stats.pmtiles\")\n",
1087
+ "hf_upload(\"cpad-stats.pmtiles\", \"boettiger-lab/ca-30x30\",\"dataset\")\n"
1088
+ ]
1089
+ },
1090
+ {
1091
+ "cell_type": "code",
1092
+ "execution_count": null,
1093
+ "id": "b0a5521b-8159-495b-a9a1-b78574fe2ceb",
1094
+ "metadata": {},
1095
+ "outputs": [],
1096
+ "source": [
1097
+ "hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30-folium\",\"space\")\n"
1098
+ ]
1099
+ },
1100
+ {
1101
+ "cell_type": "markdown",
1102
+ "id": "7727c253-813a-40e6-b73a-e973514606f3",
1103
+ "metadata": {},
1104
+ "source": [
1105
+ "# Rounding acres "
1106
+ ]
1107
+ },
1108
+ {
1109
+ "cell_type": "code",
1110
+ "execution_count": null,
1111
+ "id": "9f427c9d-6b87-4bc0-a5d7-66f16a9bec77",
1112
+ "metadata": {},
1113
+ "outputs": [],
1114
+ "source": [
1115
+ "# foliumap tooltip looks messy so I am rounding the acres value.\n",
1116
+ "parquet = \"cpad-stats.parquet\"\n",
1117
+ "ca = (con\n",
1118
+ " .read_parquet(parquet)\n",
1119
+ " .mutate(acres = _.acres.round(4)\n",
1120
+ " )\n",
1121
+ " )\n",
1122
+ "\n",
1123
+ "gdf = ca.execute().set_crs(\"EPSG:4326\")\n",
1124
+ "gdf.to_parquet(\"cpad-stats.parquet\")\n",
1125
+ "## didn't need to upload parquet since the rounding doesn't impact this?\n",
1126
+ "hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"dataset\")\n",
1127
+ "# hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30\",\"space\")\n",
1128
+ "# hf_upload(\"cpad-stats.parquet\", \"boettiger-lab/ca-30x30-folium\",\"space\")\n"
1129
+ ]
1130
+ },
1131
+ {
1132
+ "cell_type": "code",
1133
+ "execution_count": null,
1134
+ "id": "9d949c80-c572-4ee2-aa73-563c9ac5a649",
1135
+ "metadata": {},
1136
+ "outputs": [],
1137
+ "source": [
1138
+ "gdf.to_file(\"cpad-stats.geojson\")\n",
1139
+ "generate_pmtiles(\"cpad-stats.geojson\",\"cpad-stats.pmtiles\")\n",
1140
+ "hf_upload(\"cpad-stats.pmtiles\", \"boettiger-lab/ca-30x30\",\"dataset\")\n"
1141
+ ]
1142
+ }
1143
+ ],
1144
+ "metadata": {
1145
+ "kernelspec": {
1146
+ "display_name": "Python 3 (ipykernel)",
1147
+ "language": "python",
1148
+ "name": "python3"
1149
+ },
1150
+ "language_info": {
1151
+ "codemirror_mode": {
1152
+ "name": "ipython",
1153
+ "version": 3
1154
+ },
1155
+ "file_extension": ".py",
1156
+ "mimetype": "text/x-python",
1157
+ "name": "python",
1158
+ "nbconvert_exporter": "python",
1159
+ "pygments_lexer": "ipython3",
1160
+ "version": "3.12.7"
1161
+ }
1162
+ },
1163
+ "nbformat": 4,
1164
+ "nbformat_minor": 5
1165
+ }