File size: 4,152 Bytes
bc0db10
1ad0483
8a26694
a0287a0
1ad0483
8a26694
1ad0483
2900131
1c46df5
bc0db10
 
e57d033
 
1c46df5
e57d033
 
 
 
1c46df5
e57d033
8a26694
 
2900131
 
1c46df5
bc0db10
e57d033
 
 
 
 
 
2900131
8a26694
2900131
e57d033
 
 
 
 
2900131
8a26694
2900131
baf4bca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e57d033
 
 
 
 
 
 
 
 
 
baf4bca
 
 
 
 
 
 
 
 
 
 
 
 
 
e57d033
de3bb71
 
 
 
 
 
 
 
 
 
 
 
 
 
e57d033
 
 
f4e9401
 
 
 
 
e57d033
 
 
 
 
 
 
 
 
 
 
 
f4e9401
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import spaces
import gradio as gr
import numpy as np
import torch

from chrislib.general import uninvert, invert, view, view_scale

from intrinsic.pipeline import load_models, run_pipeline

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Instead of loading models at startup, we'll create a cache for models
model_cache = {}

def get_model(model_version):
    if model_version not in model_cache:
        model_cache[model_version] = load_models(model_version, device=DEVICE)
    return model_cache[model_version]

def generate_pipeline(models):
    def pipeline_func(image, **kwargs):
        return run_pipeline(models, image, **kwargs)
    
    return pipeline_func

@spaces.GPU
def process_image(image, model_version):
    # Check if image is provided
    if image is None:
        return [None, None, None]
        
    print(f"Processing with model version: {model_version}")
    print(image.shape)
    image = image.astype(np.single) / 255.

    # Get or load the selected model
    models = get_model(model_version)
    pipeline_func = generate_pipeline(models)
    
    result = pipeline_func(image, device=DEVICE, resize_conf=1024)
    
    return [view(result['hr_alb']), 1 - invert(result['dif_shd']), view_scale(result['pos_res'])]

with gr.Blocks(
    css="""
        #download {
            height: 118px;
        }
        .slider .inner {
            width: 5px;
            background: #FFF;
        }
        .viewport {
            aspect-ratio: 4/3;
        }
        .tabs button.selected {
            font-size: 20px !important;
            color: crimson !important;
        }
        h1 {
            text-align: center;
            display: block;
        }
        h2 {
            text-align: center;
            display: block;
        }
        h3 {
            text-align: center;
            display: block;
        }
        .md_feedback li {
            margin-bottom: 0px !important;
        }
        .image-gallery {
            display: flex;
            flex-wrap: wrap;
            gap: 10px;
            justify-content: center;
        }
        .image-gallery > * {
            flex: 1;
            min-width: 200px;
        }
        """,
) as demo:
    gr.Markdown(
            """
            # Colorful Diffuse Intrinsic Image Decomposition in the Wild
            <p align="center">
            <a title="Website" href="https://yaksoy.github.io/ColorfulShading/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-website.svg">
            </a>
            <a title="Github" href="https://github.com/compphoto/Intrinsic" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/github/stars/compphoto/Intrinsic?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
            </a>
        """
    )
    
    # Model version selector with information panel
    with gr.Row():
        model_version = gr.Dropdown(
            choices=["v2", "v2.1"], 
            value="v2", 
            label="Model Version",
            info="Select which model weights to use",
            scale=1
        )
        
        gr.Markdown("""
        The model may take a few seconds to load the first time you use it.
        Subsequent decompositions should be faster after the model is loaded.
        """)
    
    # Gallery-style layout for all images
    with gr.Row(elem_classes="image-gallery"):
        input_img = gr.Image(label="Input Image")
        alb_img = gr.Image(label="Albedo")
        shd_img = gr.Image(label="Diffuse Shading")
        dif_img = gr.Image(label="Diffuse Image")

    # Update to pass model_version to process_image
    input_img.change(
        process_image, 
        inputs=[input_img, model_version], 
        outputs=[alb_img, shd_img, dif_img]
    )
    # Add event handler for when model_version changes
    model_version.change(
        process_image,
        inputs=[input_img, model_version],
        outputs=[alb_img, shd_img, dif_img]
    )

demo.launch(show_error=True)