File size: 3,653 Bytes
223aff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Copyright (c) 2022, Yongqiang Li ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse

import numpy as np
from scipy.io import wavfile
import torch

import commons
from models import SynthesizerTrn
import utils


def get_args():
    parser = argparse.ArgumentParser(description='inference')
    parser.add_argument('--checkpoint', required=True, help='checkpoint')
    parser.add_argument('--cfg', required=True, help='config file')
    parser.add_argument('--outdir', required=True, help='ouput directory')
    parser.add_argument('--phone_table',
                        required=True,
                        help='input phone dict')
    parser.add_argument('--speaker_table', default=None, help='speaker table')
    parser.add_argument('--test_file', required=True, help='test file')
    args = parser.parse_args()
    return args


def main():
    args = get_args()
    print(args)
    phone_dict = {}
    with open(args.phone_table) as p_f:
        for line in p_f:
            phone_id = line.strip().split()
            phone_dict[phone_id[0]] = int(phone_id[1])
    speaker_dict = {}
    if args.speaker_table is not None:
        with open(args.speaker_table) as p_f:
            for line in p_f:
                arr = line.strip().split()
                assert len(arr) == 2
                speaker_dict[arr[0]] = int(arr[1])
    hps = utils.get_hparams_from_file(args.cfg)

    net_g = SynthesizerTrn(
        len(phone_dict) + 1,
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=len(speaker_dict) + 1,  # 0 is kept for unknown speaker
        **hps.model).cuda()
    net_g.eval()
    utils.load_checkpoint(args.checkpoint, net_g, None)

    with open(args.test_file) as fin:
        for line in fin:
            arr = line.strip().split("|")
            audio_path = arr[0]
            if len(arr) == 2:
                sid = 0
                text = arr[1]
            else:
                sid = speaker_dict[arr[1]]
                text = arr[2]
            seq = [phone_dict[symbol] for symbol in text.split()]
            if hps.data.add_blank:
                seq = commons.intersperse(seq, 0)
            seq = torch.LongTensor(seq)
            with torch.no_grad():
                x = seq.cuda().unsqueeze(0)
                x_length = torch.LongTensor([seq.size(0)]).cuda()
                sid = torch.LongTensor([sid]).cuda()
                audio = net_g.infer(
                    x,
                    x_length,
                    sid=sid,
                    noise_scale=.667,
                    noise_scale_w=0.8,
                    length_scale=1)[0][0, 0].data.cpu().float().numpy()
                audio *= 32767 / max(0.01, np.max(np.abs(audio))) * 0.6
                audio = np.clip(audio, -32767.0, 32767.0)
                wavfile.write(args.outdir + "/" + audio_path.split("/")[-1],
                              hps.data.sampling_rate, audio.astype(np.int16))


if __name__ == '__main__':
    main()