File size: 5,486 Bytes
223aff6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# Copyright (c) 2022, Yongqiang Li ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from text import text_to_sequence
import numpy as np
from scipy.io import wavfile
import torch
import json
import commons
import utils
import sys
import pathlib
try:
import onnxruntime as ort
except ImportError:
print('Please install onnxruntime!')
sys.exit(1)
def to_numpy(tensor: torch.Tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad \
else tensor.detach().numpy()
def get_args():
parser = argparse.ArgumentParser(description='inference')
parser.add_argument('--onnx_model', required=True, help='onnx model')
parser.add_argument('--cfg', required=True, help='config file')
parser.add_argument('--outdir', default="onnx_output",
help='ouput directory')
# parser.add_argument('--phone_table',
# required=True,
# help='input phone dict')
# parser.add_argument('--speaker_table', default=None, help='speaker table')
parser.add_argument('--test_file', required=True, help='test file')
args = parser.parse_args()
return args
def get_symbols_from_json(path):
import os
assert os.path.isfile(path)
with open(path, 'r') as f:
data = json.load(f)
return data['symbols']
def main():
args = get_args()
print(args)
if not pathlib.Path(args.outdir).exists():
pathlib.Path(args.outdir).mkdir(exist_ok=True, parents=True)
# phones =
symbols = get_symbols_from_json(args.cfg)
phone_dict = {
symbol: i for i, symbol in enumerate(symbols)
}
# speaker_dict = {}
# if args.speaker_table is not None:
# with open(args.speaker_table) as p_f:
# for line in p_f:
# arr = line.strip().split()
# assert len(arr) == 2
# speaker_dict[arr[0]] = int(arr[1])
hps = utils.get_hparams_from_file(args.cfg)
ort_sess = ort.InferenceSession(args.onnx_model)
with open(args.test_file) as fin:
for line in fin:
arr = line.strip().split("|")
audio_path = arr[0]
# TODO: 控制说话人编号
sid = 8
text = arr[1]
# else:
# sid = speaker_dict[arr[1]]
# text = arr[2]
seq = text_to_sequence(text, symbols=hps.symbols, cleaner_names=["japanese_cleaners2"]
)
if hps.data.add_blank:
seq = commons.intersperse(seq, 0)
# if hps.data.add_blank:
# seq = commons.intersperse(seq, 0)
with torch.no_grad():
# x = torch.LongTensor([seq])
# x_len = torch.IntTensor([x.size(1)]).long()
# sid = torch.LongTensor([sid]).long()
# scales = torch.FloatTensor([0.667, 1.0, 1])
# # make triton dynamic shape happy
# scales = scales.unsqueeze(0)
# use numpy to replace torch
x = np.array([seq], dtype=np.int64)
x_len = np.array([x.shape[1]], dtype=np.int64)
sid = np.array([sid], dtype=np.int64)
# noise(可用于控制感情等变化程度) lenth(可用于控制整体语速) noisew(控制音素发音长度变化程度)
# 参考 https://github.com/gbxh/genshinTTS
scales = np.array([0.667, 0.8, 1], dtype=np.float32)
# scales = scales[np.newaxis, :]
# scales.reshape(1, -1)
scales.resize(1, 3)
ort_inputs = {
'input': x,
'input_lengths': x_len,
'scales': scales,
'sid': sid
}
# ort_inputs = {
# 'input': to_numpy(x),
# 'input_lengths': to_numpy(x_len),
# 'scales': to_numpy(scales),
# 'sid': to_numpy(sid)
# }
import time
# start_time = time.time()
start_time = time.perf_counter()
audio = np.squeeze(ort_sess.run(None, ort_inputs))
audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
audio = np.clip(audio, -32767.0, 32767.0)
end_time = time.perf_counter()
# end_time = time.time()
print("infer time cost: ", end_time - start_time, "s")
wavfile.write(args.outdir + "/" + audio_path.split("/")[-1],
hps.data.sampling_rate, audio.astype(np.int16))
if __name__ == '__main__':
main()
|