|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.data
|
|
from librosa.filters import mel as librosa_mel_fn
|
|
|
|
MAX_WAV_VALUE = 32768.0
|
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
|
"""
|
|
PARAMS
|
|
------
|
|
C: compression factor
|
|
"""
|
|
return torch.log(torch.clamp(x, min=clip_val) * C)
|
|
|
|
|
|
def dynamic_range_decompression_torch(x, C=1):
|
|
"""
|
|
PARAMS
|
|
------
|
|
C: compression factor used to compress
|
|
"""
|
|
return torch.exp(x) / C
|
|
|
|
|
|
def spectral_normalize_torch(magnitudes):
|
|
output = dynamic_range_compression_torch(magnitudes)
|
|
return output
|
|
|
|
|
|
def spectral_de_normalize_torch(magnitudes):
|
|
output = dynamic_range_decompression_torch(magnitudes)
|
|
return output
|
|
|
|
|
|
mel_basis = {}
|
|
hann_window = {}
|
|
|
|
|
|
def spectrogram_torch(y,
|
|
n_fft,
|
|
sampling_rate,
|
|
hop_size,
|
|
win_size,
|
|
center=False):
|
|
if torch.min(y) < -1.:
|
|
print('min value is ', torch.min(y))
|
|
if torch.max(y) > 1.:
|
|
print('max value is ', torch.max(y))
|
|
|
|
global hann_window
|
|
dtype_device = str(y.dtype) + '_' + str(y.device)
|
|
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
|
if wnsize_dtype_device not in hann_window:
|
|
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
|
dtype=y.dtype, device=y.device)
|
|
|
|
y = F.pad(y.unsqueeze(1),
|
|
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
|
mode='reflect')
|
|
y = y.squeeze(1)
|
|
|
|
spec = torch.stft(y,
|
|
n_fft,
|
|
hop_length=hop_size,
|
|
win_length=win_size,
|
|
window=hann_window[wnsize_dtype_device],
|
|
center=center,
|
|
pad_mode='reflect',
|
|
normalized=False,
|
|
onesided=True)
|
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
|
return spec
|
|
|
|
|
|
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
|
global mel_basis
|
|
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
|
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
|
if fmax_dtype_device not in mel_basis:
|
|
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
|
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
|
dtype=spec.dtype, device=spec.device)
|
|
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
|
spec = spectral_normalize_torch(spec)
|
|
return spec
|
|
|
|
|
|
def mel_spectrogram_torch(y,
|
|
n_fft,
|
|
num_mels,
|
|
sampling_rate,
|
|
hop_size,
|
|
win_size,
|
|
fmin,
|
|
fmax,
|
|
center=False):
|
|
if torch.min(y) < -1.:
|
|
print('min value is ', torch.min(y))
|
|
if torch.max(y) > 1.:
|
|
print('max value is ', torch.max(y))
|
|
|
|
global mel_basis, hann_window
|
|
dtype_device = str(y.dtype) + '_' + str(y.device)
|
|
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
|
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
|
if fmax_dtype_device not in mel_basis:
|
|
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
|
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
|
dtype=y.dtype, device=y.device)
|
|
if wnsize_dtype_device not in hann_window:
|
|
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
|
dtype=y.dtype, device=y.device)
|
|
|
|
y = F.pad(y.unsqueeze(1),
|
|
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
|
mode='reflect')
|
|
y = y.squeeze(1)
|
|
|
|
spec = torch.stft(y,
|
|
n_fft,
|
|
hop_length=hop_size,
|
|
win_length=win_size,
|
|
window=hann_window[wnsize_dtype_device],
|
|
center=center,
|
|
pad_mode='reflect',
|
|
normalized=False,
|
|
onesided=True)
|
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
|
|
|
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
|
spec = spectral_normalize_torch(spec)
|
|
|
|
return spec
|
|
|