|
import os
|
|
import random
|
|
|
|
import torch
|
|
import torchaudio
|
|
import torch.utils.data
|
|
|
|
import commons
|
|
from mel_processing import spectrogram_torch
|
|
from utils import load_filepaths_and_text
|
|
|
|
|
|
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
|
"""
|
|
1) loads audio, speaker_id, text pairs
|
|
2) normalizes text and converts them to sequences of integers
|
|
3) computes spectrograms from audio files.
|
|
"""
|
|
def __init__(self, audiopaths_sid_text, hparams):
|
|
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
|
|
|
self.max_wav_value = hparams.max_wav_value
|
|
self.sampling_rate = hparams.sampling_rate
|
|
self.filter_length = hparams.filter_length
|
|
self.hop_length = hparams.hop_length
|
|
self.win_length = hparams.win_length
|
|
self.sampling_rate = hparams.sampling_rate
|
|
self.src_sampling_rate = getattr(hparams, "src_sampling_rate",
|
|
self.sampling_rate)
|
|
|
|
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
|
|
|
self.add_blank = hparams.add_blank
|
|
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
|
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
|
|
|
phone_file = getattr(hparams, "phone_table", None)
|
|
self.phone_dict = None
|
|
if phone_file is not None:
|
|
self.phone_dict = {}
|
|
with open(phone_file) as fin:
|
|
for line in fin:
|
|
arr = line.strip().split()
|
|
self.phone_dict[arr[0]] = int(arr[1])
|
|
|
|
speaker_file = getattr(hparams, "speaker_table", None)
|
|
self.speaker_dict = None
|
|
if speaker_file is not None:
|
|
self.speaker_dict = {}
|
|
with open(speaker_file) as fin:
|
|
for line in fin:
|
|
arr = line.strip().split()
|
|
self.speaker_dict[arr[0]] = int(arr[1])
|
|
|
|
random.seed(1234)
|
|
random.shuffle(self.audiopaths_sid_text)
|
|
self._filter()
|
|
|
|
def _filter(self):
|
|
"""
|
|
Filter text & store spec lengths
|
|
"""
|
|
|
|
|
|
|
|
|
|
audiopaths_sid_text_new = []
|
|
lengths = []
|
|
for item in self.audiopaths_sid_text:
|
|
audiopath = item[0]
|
|
|
|
text = item[1] if len(item) == 2 else item[2]
|
|
if self.min_text_len <= len(text) and len(
|
|
text) <= self.max_text_len:
|
|
audiopaths_sid_text_new.append(item)
|
|
lengths.append(
|
|
int(
|
|
os.path.getsize(audiopath) * self.sampling_rate /
|
|
self.src_sampling_rate) // (2 * self.hop_length))
|
|
self.audiopaths_sid_text = audiopaths_sid_text_new
|
|
self.lengths = lengths
|
|
|
|
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
|
audiopath = audiopath_sid_text[0]
|
|
if len(audiopath_sid_text) == 2:
|
|
sid = 0
|
|
text = audiopath_sid_text[1]
|
|
else:
|
|
sid = self.speaker_dict[audiopath_sid_text[1]]
|
|
text = audiopath_sid_text[2]
|
|
text = self.get_text(text)
|
|
spec, wav = self.get_audio(audiopath)
|
|
sid = self.get_sid(sid)
|
|
return (text, spec, wav, sid)
|
|
|
|
def get_audio(self, filename):
|
|
audio, sampling_rate = torchaudio.load(filename, normalize=False)
|
|
if sampling_rate != self.sampling_rate:
|
|
audio = audio.to(torch.float)
|
|
audio = torchaudio.transforms.Resample(sampling_rate,
|
|
self.sampling_rate)(audio)
|
|
audio = audio.to(torch.int16)
|
|
audio = audio[0]
|
|
audio_norm = audio / self.max_wav_value
|
|
audio_norm = audio_norm.unsqueeze(0)
|
|
spec = spectrogram_torch(audio_norm,
|
|
self.filter_length,
|
|
self.sampling_rate,
|
|
self.hop_length,
|
|
self.win_length,
|
|
center=False)
|
|
spec = torch.squeeze(spec, 0)
|
|
return spec, audio_norm
|
|
|
|
def get_text(self, text):
|
|
text_norm = [self.phone_dict[phone] for phone in text.split()]
|
|
if self.add_blank:
|
|
text_norm = commons.intersperse(text_norm, 0)
|
|
text_norm = torch.LongTensor(text_norm)
|
|
return text_norm
|
|
|
|
def get_sid(self, sid):
|
|
sid = torch.LongTensor([int(sid)])
|
|
return sid
|
|
|
|
def __getitem__(self, index):
|
|
return self.get_audio_text_speaker_pair(
|
|
self.audiopaths_sid_text[index])
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths_sid_text)
|
|
|
|
|
|
class TextAudioSpeakerCollate():
|
|
""" Zero-pads model inputs and targets
|
|
"""
|
|
def __init__(self, return_ids=False):
|
|
self.return_ids = return_ids
|
|
|
|
def __call__(self, batch):
|
|
"""Collate's training batch from normalized text, audio and speaker identities
|
|
PARAMS
|
|
------
|
|
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
|
"""
|
|
|
|
_, ids_sorted_decreasing = torch.sort(torch.LongTensor(
|
|
[x[1].size(1) for x in batch]),
|
|
dim=0,
|
|
descending=True)
|
|
|
|
max_text_len = max([len(x[0]) for x in batch])
|
|
max_spec_len = max([x[1].size(1) for x in batch])
|
|
max_wav_len = max([x[2].size(1) for x in batch])
|
|
|
|
text_lengths = torch.LongTensor(len(batch))
|
|
spec_lengths = torch.LongTensor(len(batch))
|
|
wav_lengths = torch.LongTensor(len(batch))
|
|
sid = torch.LongTensor(len(batch))
|
|
|
|
text_padded = torch.LongTensor(len(batch), max_text_len)
|
|
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0),
|
|
max_spec_len)
|
|
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
|
text_padded.zero_()
|
|
spec_padded.zero_()
|
|
wav_padded.zero_()
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
row = batch[ids_sorted_decreasing[i]]
|
|
|
|
text = row[0]
|
|
text_padded[i, :text.size(0)] = text
|
|
text_lengths[i] = text.size(0)
|
|
|
|
spec = row[1]
|
|
spec_padded[i, :, :spec.size(1)] = spec
|
|
spec_lengths[i] = spec.size(1)
|
|
|
|
wav = row[2]
|
|
wav_padded[i, :, :wav.size(1)] = wav
|
|
wav_lengths[i] = wav.size(1)
|
|
|
|
sid[i] = row[3]
|
|
|
|
if self.return_ids:
|
|
return (text_padded, text_lengths, spec_padded, spec_lengths,
|
|
wav_padded, wav_lengths, sid, ids_sorted_decreasing)
|
|
return (text_padded, text_lengths, spec_padded, spec_lengths,
|
|
wav_padded, wav_lengths, sid)
|
|
|
|
|
|
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler
|
|
):
|
|
"""
|
|
Maintain similar input lengths in a batch.
|
|
Length groups are specified by boundaries.
|
|
Ex) boundaries = [b1, b2, b3] -> any batch is included either
|
|
{x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
|
|
|
It removes samples which are not included in the boundaries.
|
|
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1
|
|
or length(x) > b3 are discarded.
|
|
"""
|
|
def __init__(self,
|
|
dataset,
|
|
batch_size,
|
|
boundaries,
|
|
num_replicas=None,
|
|
rank=None,
|
|
shuffle=True):
|
|
super().__init__(dataset,
|
|
num_replicas=num_replicas,
|
|
rank=rank,
|
|
shuffle=shuffle)
|
|
self.lengths = dataset.lengths
|
|
self.batch_size = batch_size
|
|
self.boundaries = boundaries
|
|
|
|
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
|
self.total_size = sum(self.num_samples_per_bucket)
|
|
self.num_samples = self.total_size // self.num_replicas
|
|
|
|
def _create_buckets(self):
|
|
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
|
for i in range(len(self.lengths)):
|
|
length = self.lengths[i]
|
|
idx_bucket = self._bisect(length)
|
|
if idx_bucket != -1:
|
|
buckets[idx_bucket].append(i)
|
|
|
|
for i in range(len(buckets) - 1, 0, -1):
|
|
if len(buckets[i]) == 0:
|
|
buckets.pop(i)
|
|
self.boundaries.pop(i + 1)
|
|
|
|
num_samples_per_bucket = []
|
|
for i in range(len(buckets)):
|
|
len_bucket = len(buckets[i])
|
|
total_batch_size = self.num_replicas * self.batch_size
|
|
rem = (total_batch_size -
|
|
(len_bucket % total_batch_size)) % total_batch_size
|
|
num_samples_per_bucket.append(len_bucket + rem)
|
|
return buckets, num_samples_per_bucket
|
|
|
|
def __iter__(self):
|
|
|
|
g = torch.Generator()
|
|
g.manual_seed(self.epoch)
|
|
|
|
indices = []
|
|
if self.shuffle:
|
|
for bucket in self.buckets:
|
|
indices.append(
|
|
torch.randperm(len(bucket), generator=g).tolist())
|
|
else:
|
|
for bucket in self.buckets:
|
|
indices.append(list(range(len(bucket))))
|
|
|
|
batches = []
|
|
for i in range(len(self.buckets)):
|
|
bucket = self.buckets[i]
|
|
len_bucket = len(bucket)
|
|
ids_bucket = indices[i]
|
|
num_samples_bucket = self.num_samples_per_bucket[i]
|
|
|
|
|
|
rem = num_samples_bucket - len_bucket
|
|
ids_bucket = ids_bucket + ids_bucket * (
|
|
rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
|
|
|
|
|
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
|
|
|
|
|
for j in range(len(ids_bucket) // self.batch_size):
|
|
batch = [
|
|
bucket[idx]
|
|
for idx in ids_bucket[j * self.batch_size:(j + 1) *
|
|
self.batch_size]
|
|
]
|
|
batches.append(batch)
|
|
|
|
if self.shuffle:
|
|
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
|
batches = [batches[i] for i in batch_ids]
|
|
self.batches = batches
|
|
|
|
assert len(self.batches) * self.batch_size == self.num_samples
|
|
return iter(self.batches)
|
|
|
|
def _bisect(self, x, lo=0, hi=None):
|
|
if hi is None:
|
|
hi = len(self.boundaries) - 1
|
|
|
|
if hi > lo:
|
|
mid = (hi + lo) // 2
|
|
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
|
return mid
|
|
elif x <= self.boundaries[mid]:
|
|
return self._bisect(x, lo, mid)
|
|
else:
|
|
return self._bisect(x, mid + 1, hi)
|
|
else:
|
|
return -1
|
|
|
|
def __len__(self):
|
|
return self.num_samples // self.batch_size
|
|
|