vits_onnx / export /vits /train.py
chocolatedesue
init
223aff6
raw
history blame
14 kB
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
import commons
import utils
from data_utils import (TextAudioSpeakerLoader, TextAudioSpeakerCollate,
DistributedBucketSampler)
from models import (
SynthesizerTrn,
MultiPeriodDiscriminator,
)
from losses import (generator_loss, discriminator_loss, feature_loss, kl_loss)
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
torch.backends.cudnn.benchmark = True
global_step = 0
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
n_gpus = torch.cuda.device_count()
hps = utils.get_hparams()
mp.spawn(run, nprocs=n_gpus, args=(
n_gpus,
hps,
))
def run(rank, n_gpus, hps):
global global_step
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(
log_dir=os.path.join(hps.model_dir, "eval"))
dist.init_process_group(backend='nccl',
init_method='env://',
world_size=n_gpus,
rank=rank)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size, [32, 300, 400, 500, 600, 700, 800, 900, 1000],
num_replicas=n_gpus,
rank=rank,
shuffle=True)
collate_fn = TextAudioSpeakerCollate()
train_loader = DataLoader(train_dataset,
num_workers=8,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
batch_sampler=train_sampler)
if rank == 0:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files,
hps.data)
eval_loader = DataLoader(eval_dataset,
num_workers=8,
shuffle=False,
batch_size=hps.train.batch_size,
pin_memory=True,
drop_last=False,
collate_fn=collate_fn)
net_g = SynthesizerTrn(hps.data.num_phones,
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
optim_g = torch.optim.AdamW(net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
optim_d = torch.optim.AdamW(net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
net_g = DDP(net_g, device_ids=[rank])
net_d = DDP(net_d, device_ids=[rank])
try:
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
optim_g)
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
optim_d)
global_step = (epoch_str - 1) * len(train_loader)
except Exception as e:
epoch_str = 1
global_step = 0
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(rank, epoch, hps, [net_g, net_d],
[optim_g, optim_d], [scheduler_g, scheduler_d],
scaler, [train_loader, eval_loader], logger,
[writer, writer_eval])
else:
train_and_evaluate(rank, epoch, hps, [net_g, net_d],
[optim_g, optim_d], [scheduler_g, scheduler_d],
scaler, [train_loader, None], None, None)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler,
loaders, logger, writers):
net_g, net_d = nets
optim_g, optim_d = optims
scheduler_g, scheduler_d = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths,
speakers) in enumerate(train_loader):
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
rank, non_blocking=True)
spec, spec_lengths = spec.cuda(
rank, non_blocking=True), spec_lengths.cuda(rank,
non_blocking=True)
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
rank, non_blocking=True)
speakers = speakers.cuda(rank, non_blocking=True)
with autocast(enabled=hps.train.fp16_run):
y_hat, l_length, attn, ids_slice, x_mask, z_mask, (
z, z_p, m_p, logs_p, m_q,
logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers)
mel = spec_to_mel_torch(spec, hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate, hps.data.mel_fmin,
hps.data.mel_fmax)
y_mel = commons.slice_segments(
mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1), hps.data.filter_length,
hps.data.n_mel_channels, hps.data.sampling_rate,
hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin,
hps.data.mel_fmax)
y = commons.slice_segments(y, ids_slice * hps.data.hop_length,
hps.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):
loss_dur = torch.sum(l_length.float())
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p,
z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]['lr']
losses = [
loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl
]
logger.info('Train Epoch: {} [{:.0f}%]'.format(
epoch, 100. * batch_idx / len(train_loader)))
logger.info([x.item() for x in losses] + [global_step, lr])
scalar_dict = {
"loss/g/total": loss_gen_all,
"loss/d/total": loss_disc_all,
"learning_rate": lr,
"grad_norm_d": grad_norm_d,
"grad_norm_g": grad_norm_g
}
scalar_dict.update({
"loss/g/fm": loss_fm,
"loss/g/mel": loss_mel,
"loss/g/dur": loss_dur,
"loss/g/kl": loss_kl
})
scalar_dict.update({
"loss/g/{}".format(i): v
for i, v in enumerate(losses_gen)
})
scalar_dict.update({
"loss/d_r/{}".format(i): v
for i, v in enumerate(losses_disc_r)
})
scalar_dict.update({
"loss/d_g/{}".format(i): v
for i, v in enumerate(losses_disc_g)
})
image_dict = {
"slice/mel_org":
utils.plot_spectrogram_to_numpy(
y_mel[0].data.cpu().numpy()),
"slice/mel_gen":
utils.plot_spectrogram_to_numpy(
y_hat_mel[0].data.cpu().numpy()),
"all/mel":
utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
"all/attn":
utils.plot_alignment_to_numpy(attn[0,
0].data.cpu().numpy())
}
utils.summarize(writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict)
if global_step % hps.train.eval_interval == 0:
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(
net_g, optim_g, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir,
"G_{}.pth".format(global_step)))
utils.save_checkpoint(
net_d, optim_d, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir,
"D_{}.pth".format(global_step)))
global_step += 1
if rank == 0:
logger.info('====> Epoch: {}'.format(epoch))
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
with torch.no_grad():
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths,
speakers) in enumerate(eval_loader):
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
speakers = speakers.cuda(0)
# remove else
x = x[:1]
x_lengths = x_lengths[:1]
spec = spec[:1]
spec_lengths = spec_lengths[:1]
y = y[:1]
y_lengths = y_lengths[:1]
speakers = speakers[:1]
break
y_hat, attn, mask, *_ = generator.module.infer(x,
x_lengths,
speakers,
max_len=1000)
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
mel = spec_to_mel_torch(spec, hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate, hps.data.mel_fmin,
hps.data.mel_fmax)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(), hps.data.filter_length,
hps.data.n_mel_channels, hps.data.sampling_rate,
hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin,
hps.data.mel_fmax)
image_dict = {
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
}
audio_dict = {"gen/audio": y_hat[0, :, :y_hat_lengths[0]]}
if global_step == 0:
image_dict.update(
{"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
audio_dict.update({"gt/audio": y[0, :, :y_lengths[0]]})
utils.summarize(writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate)
generator.train()
if __name__ == "__main__":
main()