|
import argparse
|
|
import glob
|
|
import json
|
|
import logging
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
|
|
import numpy as np
|
|
from scipy.io.wavfile import read
|
|
import torch
|
|
|
|
MATPLOTLIB_FLAG = False
|
|
|
|
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
|
logger = logging
|
|
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
|
assert os.path.isfile(checkpoint_path)
|
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
|
iteration = checkpoint_dict['iteration']
|
|
learning_rate = checkpoint_dict['learning_rate']
|
|
if optimizer is not None:
|
|
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
|
saved_state_dict = checkpoint_dict['model']
|
|
if hasattr(model, 'module'):
|
|
state_dict = model.module.state_dict()
|
|
else:
|
|
state_dict = model.state_dict()
|
|
new_state_dict = {}
|
|
for k, v in state_dict.items():
|
|
try:
|
|
new_state_dict[k] = saved_state_dict[k]
|
|
except Exception as e:
|
|
logger.info("%s is not in the checkpoint" % k)
|
|
new_state_dict[k] = v
|
|
if hasattr(model, 'module'):
|
|
model.module.load_state_dict(new_state_dict)
|
|
else:
|
|
model.load_state_dict(new_state_dict)
|
|
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
|
checkpoint_path, iteration))
|
|
return model, optimizer, learning_rate, iteration
|
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration,
|
|
checkpoint_path):
|
|
logger.info(
|
|
"Saving model and optimizer state at iteration {} to {}".format(
|
|
iteration, checkpoint_path))
|
|
if hasattr(model, 'module'):
|
|
state_dict = model.module.state_dict()
|
|
else:
|
|
state_dict = model.state_dict()
|
|
torch.save(
|
|
{
|
|
'model': state_dict,
|
|
'iteration': iteration,
|
|
'optimizer': optimizer.state_dict(),
|
|
'learning_rate': learning_rate
|
|
}, checkpoint_path)
|
|
|
|
|
|
def summarize(
|
|
writer,
|
|
global_step,
|
|
scalars={},
|
|
histograms={},
|
|
images={},
|
|
audios={},
|
|
audio_sampling_rate=22050):
|
|
for k, v in scalars.items():
|
|
writer.add_scalar(k, v, global_step)
|
|
for k, v in histograms.items():
|
|
writer.add_histogram(k, v, global_step)
|
|
for k, v in images.items():
|
|
writer.add_image(k, v, global_step, dataformats='HWC')
|
|
for k, v in audios.items():
|
|
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
|
f_list = glob.glob(os.path.join(dir_path, regex))
|
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
|
x = f_list[-1]
|
|
print(x)
|
|
return x
|
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram):
|
|
global MATPLOTLIB_FLAG
|
|
if not MATPLOTLIB_FLAG:
|
|
import matplotlib
|
|
matplotlib.use("Agg")
|
|
MATPLOTLIB_FLAG = True
|
|
mpl_logger = logging.getLogger('matplotlib')
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 2))
|
|
im = ax.imshow(spectrogram,
|
|
aspect="auto",
|
|
origin="lower",
|
|
interpolation='none')
|
|
plt.colorbar(im, ax=ax)
|
|
plt.xlabel("Frames")
|
|
plt.ylabel("Channels")
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, ))
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def plot_alignment_to_numpy(alignment, info=None):
|
|
global MATPLOTLIB_FLAG
|
|
if not MATPLOTLIB_FLAG:
|
|
import matplotlib
|
|
matplotlib.use("Agg")
|
|
MATPLOTLIB_FLAG = True
|
|
mpl_logger = logging.getLogger('matplotlib')
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4))
|
|
im = ax.imshow(alignment.transpose(),
|
|
aspect='auto',
|
|
origin='lower',
|
|
interpolation='none')
|
|
fig.colorbar(im, ax=ax)
|
|
xlabel = 'Decoder timestep'
|
|
if info is not None:
|
|
xlabel += '\n\n' + info
|
|
plt.xlabel(xlabel)
|
|
plt.ylabel('Encoder timestep')
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, ))
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def load_wav_to_torch(full_path):
|
|
sampling_rate, data = read(full_path)
|
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"):
|
|
with open(filename, encoding='utf-8') as f:
|
|
filepaths_and_text = [line.strip().split(split) for line in f]
|
|
return filepaths_and_text
|
|
|
|
|
|
def get_hparams(init=True):
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-c',
|
|
'--config',
|
|
type=str,
|
|
default="./configs/base.json",
|
|
help='JSON file for configuration')
|
|
parser.add_argument('-m',
|
|
'--model',
|
|
type=str,
|
|
required=True,
|
|
help='Model name')
|
|
parser.add_argument('--train_data',
|
|
type=str,
|
|
required=True,
|
|
help='train data')
|
|
parser.add_argument('--val_data', type=str, required=True, help='val data')
|
|
parser.add_argument('--phone_table',
|
|
type=str,
|
|
required=True,
|
|
help='phone table')
|
|
parser.add_argument('--speaker_table',
|
|
type=str,
|
|
default=None,
|
|
help='speaker table, required for multiple speakers')
|
|
|
|
args = parser.parse_args()
|
|
model_dir = args.model
|
|
|
|
if not os.path.exists(model_dir):
|
|
os.makedirs(model_dir)
|
|
|
|
config_path = args.config
|
|
config_save_path = os.path.join(model_dir, "config.json")
|
|
if init:
|
|
with open(config_path, "r", encoding='utf8') as f:
|
|
data = f.read()
|
|
with open(config_save_path, "w", encoding='utf8') as f:
|
|
f.write(data)
|
|
else:
|
|
with open(config_save_path, "r", encoding='utf8') as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
config['data']['training_files'] = args.train_data
|
|
config['data']['validation_files'] = args.val_data
|
|
config['data']['phone_table'] = args.phone_table
|
|
|
|
config['data']['num_phones'] = len(open(args.phone_table).readlines()) + 1
|
|
if args.speaker_table is not None:
|
|
config['data']['speaker_table'] = args.speaker_table
|
|
|
|
config['data']['n_speakers'] = len(
|
|
open(args.speaker_table).readlines()) + 1
|
|
else:
|
|
config['data']['n_speakers'] = 0
|
|
|
|
hparams = HParams(**config)
|
|
hparams.model_dir = model_dir
|
|
return hparams
|
|
|
|
|
|
def get_hparams_from_dir(model_dir):
|
|
config_save_path = os.path.join(model_dir, "config.json")
|
|
with open(config_save_path, "r") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
|
|
hparams = HParams(**config)
|
|
hparams.model_dir = model_dir
|
|
return hparams
|
|
|
|
|
|
def get_hparams_from_file(config_path):
|
|
with open(config_path, "r") as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
|
|
hparams = HParams(**config)
|
|
return hparams
|
|
|
|
|
|
def check_git_hash(model_dir):
|
|
source_dir = os.path.dirname(os.path.realpath(__file__))
|
|
if not os.path.exists(os.path.join(source_dir, ".git")):
|
|
logger.warn('''{} is not a git repository, therefore hash value
|
|
comparison will be ignored.'''.format(source_dir))
|
|
return
|
|
|
|
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
|
|
|
path = os.path.join(model_dir, "githash")
|
|
if os.path.exists(path):
|
|
saved_hash = open(path).read()
|
|
if saved_hash != cur_hash:
|
|
logger.warn(
|
|
"git hash values are different. {}(saved) != {}(current)".
|
|
format(saved_hash[:8], cur_hash[:8]))
|
|
else:
|
|
open(path, "w").write(cur_hash)
|
|
|
|
|
|
def get_logger(model_dir, filename="train.log"):
|
|
global logger
|
|
logger = logging.getLogger(os.path.basename(model_dir))
|
|
logger.setLevel(logging.INFO)
|
|
|
|
formatter = logging.Formatter(
|
|
"%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
|
if not os.path.exists(model_dir):
|
|
os.makedirs(model_dir)
|
|
h = logging.FileHandler(os.path.join(model_dir, filename))
|
|
h.setLevel(logging.INFO)
|
|
h.setFormatter(formatter)
|
|
logger.addHandler(h)
|
|
return logger
|
|
|
|
|
|
class HParams():
|
|
def __init__(self, **kwargs):
|
|
for k, v in kwargs.items():
|
|
if type(v) == dict:
|
|
v = HParams(**v)
|
|
self[k] = v
|
|
|
|
def keys(self):
|
|
return self.__dict__.keys()
|
|
|
|
def items(self):
|
|
return self.__dict__.items()
|
|
|
|
def values(self):
|
|
return self.__dict__.values()
|
|
|
|
def __len__(self):
|
|
return len(self.__dict__)
|
|
|
|
def __getitem__(self, key):
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
return setattr(self, key, value)
|
|
|
|
def __contains__(self, key):
|
|
return key in self.__dict__
|
|
|
|
def __repr__(self):
|
|
return self.__dict__.__repr__()
|
|
|