ccm commited on
Commit
b884aa9
·
verified ·
1 Parent(s): 55950a1

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +181 -0
main.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import threading # to allow streaming response
2
+ import time # to pave the deliver of the message
3
+
4
+ import gradio # for the interface
5
+ import spaces # for GPU
6
+ import transformers # to load an LLM
7
+ import langchain_community.vectorstores # to load the publication vectorstore
8
+ import langchain_huggingface # for embeddings
9
+
10
+ # The greeting message
11
+ GREETING = (
12
+ "Howdy! "
13
+ "I'm an AI agent that uses [retrieval-augmented generation](https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about additive manufacturing research. "
14
+ "I still make some mistakes though. "
15
+ "What can I tell you about today?"
16
+ )
17
+
18
+ # Example queries
19
+ EXAMPLE_QUERIES = [
20
+ "Tell me about new research at the intersection of additive manufacturing and machine learning.",
21
+ ]
22
+
23
+ # The embedding model name
24
+ EMBEDDING_MODEL_NAME = "all-MiniLM-L12-v2"
25
+
26
+ # The LLM model name
27
+ LLM_MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
28
+
29
+ # The number of publications to retrieve
30
+ PUBLICATIONS_TO_RETRIEVE = 5
31
+
32
+
33
+ def embedding(
34
+ model_name: str = "all-MiniLM-L12-v2",
35
+ device: str = "mps",
36
+ normalize_embeddings: bool = False,
37
+ ) -> langchain_huggingface.HuggingFaceEmbeddings:
38
+ """
39
+ Get the embedding function
40
+ :param model_name: The model name
41
+ :type model_name: str
42
+ :param device: The device to use
43
+ :type device: str
44
+ :param normalize_embeddings: Whether to normalize embeddings
45
+ :type normalize_embeddings: bool
46
+
47
+ :return: The embedding function
48
+ :rtype: langchain_huggingface.HuggingFaceEmbeddings
49
+ """
50
+ return langchain_huggingface.HuggingFaceEmbeddings(
51
+ model_name=model_name,
52
+ model_kwargs={"device": device},
53
+ encode_kwargs={"normalize_embeddings": normalize_embeddings},
54
+ )
55
+
56
+
57
+ def load_publication_vectorstore() -> langchain_community.vectorstores.FAISS:
58
+ """
59
+ Load the publication vectorstore
60
+ :return: The publication vectorstore
61
+ :rtype: langchain_community.vectorstores.FAISS
62
+ """
63
+ return langchain_community.vectorstores.FAISS.load_local(
64
+ folder_path="publication_vectorstore",
65
+ embeddings=embedding(),
66
+ allow_dangerous_deserialization=True,
67
+ )
68
+
69
+
70
+ publication_vectorstore = load_publication_vectorstore()
71
+
72
+ # Create an LLM pipeline that we can send queries to
73
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
74
+ LLM_MODEL_NAME, trust_remote_code=True
75
+ )
76
+ streamer = transformers.TextIteratorStreamer(
77
+ tokenizer, skip_prompt=True, skip_special_tokens=True
78
+ )
79
+ chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
80
+ LLM_MODEL_NAME, device_map="auto", torch_dtype="auto", trust_remote_code=True
81
+ )
82
+
83
+
84
+ def preprocess(query: str, k: int) -> tuple[str, str]:
85
+ """
86
+ Searches the dataset for the top k most relevant papers to the query and returns a prompt and references
87
+ Args:
88
+ query (str): The user's query
89
+ k (int): The number of results to return
90
+ Returns:
91
+ tuple[str, str]: A tuple containing the prompt and references
92
+ """
93
+ documents = publication_vectorstore.search(
94
+ query, k=PUBLICATIONS_TO_RETRIEVE, search_type="similarity"
95
+ )
96
+
97
+ prompt = (
98
+ "You are an AI assistant who delights in helping people learn about research from the Design Research Collective, which is a research lab at Carnegie Mellon University led by Professor Chris McComb. "
99
+ "Your main task is to provide a concise ANSWER to the USER_QUERY that includes as many of the RESEARCH_ABSTRACTS as possible. "
100
+ "The RESEARCH_ABSTRACTS are provided in the `.bibtex` format. Your ANSWER should contain citations to the RESEARCH_ABSTRACTS using (AUTHOR, YEAR) format. "
101
+ "DO NOT list references at the end of the answer.\n\n"
102
+ "===== RESEARCH_EXCERPTS =====:\n{{EXCERPTS_GO_HERE}}\n\n"
103
+ "===== USER_QUERY =====:\n{{QUERY_GOES_HERE}}\n\n"
104
+ "===== ANSWER =====:\n"
105
+ )
106
+
107
+ research_excerpts = [
108
+ '"... ' + document.page_content + '..."' for document in documents
109
+ ]
110
+
111
+ prompt = prompt.replace("{{EXCERPTS_GO_HERE}}", "\n\n".join(research_excerpts))
112
+ prompt = prompt.replace("{{QUERY_GOES_HERE}}", query)
113
+
114
+ print(prompt)
115
+
116
+ return prompt, ""
117
+
118
+
119
+ @spaces.GPU
120
+ def reply(message: str, history: list[str]) -> str:
121
+ """
122
+ This function is responsible for crafting a response
123
+ Args:
124
+ message (str): The user's message
125
+ history (list[str]): The conversation history
126
+ Returns:
127
+ str: The AI's response
128
+ """
129
+
130
+ # Apply preprocessing
131
+ message, bypass = preprocess(message, PUBLICATIONS_TO_RETRIEVE)
132
+
133
+ # This is some handling that is applied to the history variable to put it in a good format
134
+ history_transformer_format = [
135
+ {"role": role, "content": message_pair[idx]}
136
+ for message_pair in history
137
+ for idx, role in enumerate(["user", "assistant"])
138
+ if message_pair[idx] is not None
139
+ ] + [{"role": "user", "content": message}]
140
+
141
+ # Stream a response from pipe
142
+ text = tokenizer.apply_chat_template(
143
+ history_transformer_format, tokenize=False, add_generation_prompt=True
144
+ )
145
+ model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")
146
+
147
+ generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512)
148
+ t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs)
149
+ t.start()
150
+
151
+ partial_message = ""
152
+ for new_token in streamer:
153
+ if new_token != "<":
154
+ partial_message += new_token
155
+ time.sleep(0.01)
156
+ yield partial_message
157
+
158
+ yield partial_message + "\n\n" + bypass
159
+
160
+
161
+ # Create and run the gradio interface
162
+ gradio.ChatInterface(
163
+ reply,
164
+ examples=EXAMPLE_QUERIES,
165
+ chatbot=gradio.Chatbot(
166
+ show_label=False,
167
+ show_share_button=False,
168
+ show_copy_button=False,
169
+ value=[[None, GREETING]],
170
+ avatar_images=(
171
+ "https://cdn.dribbble.com/users/316121/screenshots/2333676/11-04_scotty-plaid_dribbble.png",
172
+ "https://media.thetab.com/blogs.dir/90/files/2021/06/screenshot-2021-06-10-at-110730-1024x537.png",
173
+ ),
174
+ height="60vh",
175
+ bubble_full_width=False,
176
+ ),
177
+ retry_btn=None,
178
+ undo_btn=None,
179
+ clear_btn=None,
180
+ theme=gradio.themes.Default(font=[gradio.themes.GoogleFont("Zilla Slab")]),
181
+ ).launch(debug=True)