ccm commited on
Commit
fe0a782
·
verified ·
1 Parent(s): 27b6fbd

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +175 -0
main.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json # to work with JSON
2
+ import threading # to allow streaming response
3
+ import time # to pave the deliver of the message
4
+
5
+ import faiss # to create a search index
6
+ import gradio # for the interface
7
+ import numpy # to work with vectors
8
+ import pandas # to work with pandas
9
+ import sentence_transformers # to load an embedding model
10
+ import spaces # for GPU
11
+ import transformers # to load an LLM
12
+
13
+ # Constants
14
+ GREETING = (
15
+ "Howdy! I'm an AI agent that uses a [retrieval-augmented generation]("
16
+ "https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about published at [ASME IDETC](https://asmedigitalcollection.asme.org/IDETC-CIE). And the best part is that I always cite my sources! What"
17
+ " can I tell you about today?"
18
+ )
19
+ EXAMPLE_QUERIES = [
20
+ "What's the difference between a markov chain and a hidden markov model?",
21
+ ]
22
+ EMBEDDING_MODEL_NAME = "allenai-specter"
23
+ LLM_MODEL_NAME = "Qwen/Qwen2-7B-Instruct"
24
+
25
+ # Load the dataset and convert to pandas
26
+ data = pd.read_parquet("hf://datasets/ccm/rag-idetc/data/train-00000-of-00001.parquet")
27
+
28
+ # Filter out any publications without an abstract
29
+ abstract_is_null = [
30
+ '"abstract": null' in json.dumps(bibdict) for bibdict in data["bib_dict"].values
31
+ ]
32
+ data = data[~pandas.Series(abstract_is_null)]
33
+ data.reset_index(inplace=True)
34
+
35
+ # Load the model for later use in embeddings
36
+ model = sentence_transformers.SentenceTransformer(EMBEDDING_MODEL_NAME)
37
+
38
+ # Create an LLM pipeline that we can send queries to
39
+ tokenizer = transformers.AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
40
+ streamer = transformers.TextIteratorStreamer(
41
+ tokenizer, skip_prompt=True, skip_special_tokens=True
42
+ )
43
+ chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
44
+ LLM_MODEL_NAME, torch_dtype="auto", device_map="auto"
45
+ )
46
+
47
+ # Create a FAISS index for fast similarity search
48
+ metric = faiss.METRIC_INNER_PRODUCT
49
+ vectors = numpy.stack(data["embedding"].tolist(), axis=0)
50
+ index = faiss.IndexFlatL2(len(data["embedding"][0]))
51
+ index.metric_type = metric
52
+ faiss.normalize_L2(vectors)
53
+ index.train(vectors)
54
+ index.add(vectors)
55
+
56
+
57
+ def preprocess(query: str, k: int) -> tuple[str, str]:
58
+ """
59
+ Searches the dataset for the top k most relevant papers to the query and returns a prompt and references
60
+ Args:
61
+ query (str): The user's query
62
+ k (int): The number of results to return
63
+ Returns:
64
+ tuple[str, str]: A tuple containing the prompt and references
65
+ """
66
+ encoded_query = numpy.expand_dims(model.encode(query), axis=0)
67
+ print(query, encoded_query)
68
+ faiss.normalize_L2(encoded_query)
69
+ D, I = index.search(encoded_query, k)
70
+ top_five = data.loc[I[0]]
71
+
72
+ prompt = (
73
+ "You are an AI assistant who delights in helping people learn about research from the IDETC Conference. Your main task is to provide an ANSWER to the USER_QUERY based on the RESEARCH_ABSTRACTS.\n\n"
74
+ "RESEARCH_ABSTRACTS:\n{{ABSTRACTS_GO_HERE}}\n\n"
75
+ "USER_GUERY:\n{{QUERY_GOES_HERE}}\n\n"
76
+ "ANSWER:\n"
77
+ )
78
+
79
+ references = "\n\n## References\n\n"
80
+ research_abstracts = ""
81
+
82
+ for i in range(k):
83
+ title = str(int(top_five["title"].values[i])
84
+ id = str(int(top_five["id"].values[i])
85
+ url = "https://doi.org/10.1115/" + id
86
+ path = str(int(top_five["path"].values[i])
87
+ text = str(int(top_five["text"].values[i])
88
+
89
+ research_abstracts += str(i + i) + ". This excerpt from is from: '" + title + "':\n" + text + "\n"
90
+ references += (
91
+ str(i + 1)
92
+ + ". ["
93
+ + title
94
+ + "]"
95
+ + url
96
+ + ").\n"
97
+ )
98
+
99
+ prompt = prompt.replace("{{ABSTRACTS_GO_HERE}}", research_abstracts)
100
+ prompt = prompt.replace("{{QUERY_GOES_HERE}}", query)
101
+
102
+ return prompt, references
103
+
104
+ def postprocess(response: str, bypass_from_preprocessing: str) -> str:
105
+ """
106
+ Applies a postprocessing step to the LLM's response before the user receives it
107
+ Args:
108
+ response (str): The LLM's response
109
+ bypass_from_preprocessing (str): The bypass variable from the preprocessing step
110
+ Returns:
111
+ str: The postprocessed response
112
+ """
113
+ return response + bypass_from_preprocessing
114
+
115
+
116
+ @spaces.GPU
117
+ def reply(message: str, history: list[str]) -> str:
118
+ """
119
+ This function is responsible for crafting a response
120
+ Args:
121
+ message (str): The user's message
122
+ history (list[str]): The conversation history
123
+ Returns:
124
+ str: The AI's response
125
+ """
126
+
127
+ # Apply preprocessing
128
+ message, bypass = preprocess(message, 5)
129
+
130
+ # This is some handling that is applied to the history variable to put it in a good format
131
+ history_transformer_format = [
132
+ {"role": role, "content": message_pair[idx]}
133
+ for message_pair in history
134
+ for idx, role in enumerate(["user", "assistant"])
135
+ if message_pair[idx] is not None
136
+ ] + [{"role": "user", "content": message}]
137
+
138
+ # Stream a response from pipe
139
+ text = tokenizer.apply_chat_template(
140
+ history_transformer_format, tokenize=False, add_generation_prompt=True
141
+ )
142
+ model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")
143
+
144
+ generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512)
145
+ t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs)
146
+ t.start()
147
+
148
+ partial_message = ""
149
+ for new_token in streamer:
150
+ if new_token != "<":
151
+ partial_message += new_token
152
+ time.sleep(0.05)
153
+ yield partial_message
154
+
155
+ yield partial_message + bypass
156
+
157
+
158
+ # Create and run the gradio interface
159
+ gradio.ChatInterface(
160
+ reply,
161
+ examples=EXAMPLE_QUERIES,
162
+ chatbot=gradio.Chatbot(
163
+ show_label=False,
164
+ show_share_button=False,
165
+ show_copy_button=False,
166
+ value=[[None, GREETING]],
167
+ height="60vh",
168
+ bubble_full_width=False,
169
+ ),
170
+ retry_btn=None,
171
+ undo_btn=None,
172
+ clear_btn=None,
173
+ ).launch(debug=True)
174
+
175
+