File size: 3,981 Bytes
dcfb67c
 
 
 
 
 
 
 
 
0f76a19
dcfb67c
 
 
0f76a19
 
dcfb67c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8948197
 
 
 
 
 
 
 
 
 
 
 
dcfb67c
 
 
8948197
 
 
 
 
 
 
 
 
 
 
 
dcfb67c
 
 
8948197
 
 
 
 
 
 
 
 
 
 
 
dcfb67c
 
 
 
 
 
 
0f76a19
dcfb67c
8948197
 
dcfb67c
0f76a19
8948197
 
dcfb67c
 
 
 
 
 
 
 
0f76a19
dcfb67c
 
 
 
 
dc3911f
dcfb67c
 
 
dc3911f
dcfb67c
 
 
 
 
0f76a19
 
dcfb67c
 
0f76a19
dcfb67c
0f76a19
dcfb67c
 
 
 
 
 
0f76a19
dcfb67c
 
 
 
0f76a19
dcfb67c
511d588
 
 
 
 
dcfb67c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import torch
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from utils import get_modelist, find_audio_files, embed_img
from model import EvalNet


CLASSES = ["Gong", "Shang", "Jue", "Zhi", "Yu"]
TEMP_DIR = "./__pycache__/tmp"
SAMPLE_RATE = 44100


def zero_padding(y: np.ndarray, end: int):
    size = len(y)
    if size < end:
        return np.concatenate((y, np.zeros(end - size)))

    elif size > end:
        return y[-end:]

    return y


def audio2mel(audio_path: str, seg_len=20):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    y = zero_padding(y, seg_len * sr)
    mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
    log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
    librosa.display.specshow(log_mel_spec)
    plt.axis("off")
    plt.savefig(
        f"{TEMP_DIR}/output.jpg",
        bbox_inches="tight",
        pad_inches=0.0,
    )
    plt.close()


def audio2cqt(audio_path: str, seg_len=20):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    y = zero_padding(y, seg_len * sr)
    cqt_spec = librosa.cqt(y=y, sr=sr)
    log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
    librosa.display.specshow(log_cqt_spec)
    plt.axis("off")
    plt.savefig(
        f"{TEMP_DIR}/output.jpg",
        bbox_inches="tight",
        pad_inches=0.0,
    )
    plt.close()


def audio2chroma(audio_path: str, seg_len=20):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    y = zero_padding(y, seg_len * sr)
    chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
    log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
    librosa.display.specshow(log_chroma_spec)
    plt.axis("off")
    plt.savefig(
        f"{TEMP_DIR}/output.jpg",
        bbox_inches="tight",
        pad_inches=0.0,
    )
    plt.close()


def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
    if os.path.exists(folder_path):
        shutil.rmtree(folder_path)

    if not wav_path:
        return None, "Please input an audio!"

    spec = log_name.split("_")[-3]
    os.makedirs(folder_path, exist_ok=True)
    try:
        model = EvalNet(log_name, len(CLASSES)).model
        eval("audio2%s" % spec)(wav_path)

    except Exception as e:
        return None, f"{e}"

    input = embed_img(f"{folder_path}/output.jpg")
    output: torch.Tensor = model(input)
    pred_id = torch.max(output.data, 1)[1]
    return (
        os.path.basename(wav_path),
        CLASSES[pred_id].capitalize(),
    )


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    models = get_modelist(assign_model="vit_l_16_cqt")
    examples = []
    example_audios = find_audio_files()
    for audio in example_audios:
        examples.append([audio, models[0]])

    with gr.Blocks() as demo:
        gr.Interface(
            fn=infer,
            inputs=[
                gr.Audio(label="Upload a recording", type="filepath"),
                gr.Dropdown(choices=models, label="Select a model", value=models[0]),
            ],
            outputs=[
                gr.Textbox(label="Audio filename", show_copy_button=True),
                gr.Textbox(
                    label="Chinese pentatonic mode recognition",
                    show_copy_button=True,
                ),
            ],
            examples=examples,
            cache_examples=False,
            flagging_mode="never",
            title="It is recommended to keep the recording length around 20s.",
        )

        gr.Markdown(
            """
# Cite
```bibtex
@article{Zhou-2025,
  title   = {CCMusic: an Open and Diverse Database for Chinese Music Information Retrieval Research},
  author  = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
  journal = {Transactions of the International Society for Music Information Retrieval},
  year    = {2025}
}
```"""
        )

    demo.launch()