Spaces:
Running
Running
File size: 3,981 Bytes
dcfb67c 0f76a19 dcfb67c 0f76a19 dcfb67c 8948197 dcfb67c 8948197 dcfb67c 8948197 dcfb67c 0f76a19 dcfb67c 8948197 dcfb67c 0f76a19 8948197 dcfb67c 0f76a19 dcfb67c dc3911f dcfb67c dc3911f dcfb67c 0f76a19 dcfb67c 0f76a19 dcfb67c 0f76a19 dcfb67c 0f76a19 dcfb67c 0f76a19 dcfb67c 511d588 dcfb67c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import os
import torch
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from utils import get_modelist, find_audio_files, embed_img
from model import EvalNet
CLASSES = ["Gong", "Shang", "Jue", "Zhi", "Yu"]
TEMP_DIR = "./__pycache__/tmp"
SAMPLE_RATE = 44100
def zero_padding(y: np.ndarray, end: int):
size = len(y)
if size < end:
return np.concatenate((y, np.zeros(end - size)))
elif size > end:
return y[-end:]
return y
def audio2mel(audio_path: str, seg_len=20):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = zero_padding(y, seg_len * sr)
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
librosa.display.specshow(log_mel_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def audio2cqt(audio_path: str, seg_len=20):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = zero_padding(y, seg_len * sr)
cqt_spec = librosa.cqt(y=y, sr=sr)
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
librosa.display.specshow(log_cqt_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def audio2chroma(audio_path: str, seg_len=20):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = zero_padding(y, seg_len * sr)
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
librosa.display.specshow(log_chroma_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
if not wav_path:
return None, "Please input an audio!"
spec = log_name.split("_")[-3]
os.makedirs(folder_path, exist_ok=True)
try:
model = EvalNet(log_name, len(CLASSES)).model
eval("audio2%s" % spec)(wav_path)
except Exception as e:
return None, f"{e}"
input = embed_img(f"{folder_path}/output.jpg")
output: torch.Tensor = model(input)
pred_id = torch.max(output.data, 1)[1]
return (
os.path.basename(wav_path),
CLASSES[pred_id].capitalize(),
)
if __name__ == "__main__":
warnings.filterwarnings("ignore")
models = get_modelist(assign_model="vit_l_16_cqt")
examples = []
example_audios = find_audio_files()
for audio in example_audios:
examples.append([audio, models[0]])
with gr.Blocks() as demo:
gr.Interface(
fn=infer,
inputs=[
gr.Audio(label="Upload a recording", type="filepath"),
gr.Dropdown(choices=models, label="Select a model", value=models[0]),
],
outputs=[
gr.Textbox(label="Audio filename", show_copy_button=True),
gr.Textbox(
label="Chinese pentatonic mode recognition",
show_copy_button=True,
),
],
examples=examples,
cache_examples=False,
flagging_mode="never",
title="It is recommended to keep the recording length around 20s.",
)
gr.Markdown(
"""
# Cite
```bibtex
@article{Zhou-2025,
title = {CCMusic: an Open and Diverse Database for Chinese Music Information Retrieval Research},
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
journal = {Transactions of the International Society for Music Information Retrieval},
year = {2025}
}
```"""
)
demo.launch()
|