CNPM / app.py
admin
fix examples
dc3911f
raw
history blame
4.08 kB
import os
import torch
import random
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from utils import get_modelist, find_audio_files, embed_img
from model import EvalNet
CLASSES = ["Gong", "Shang", "Jue", "Zhi", "Yu"]
TEMP_DIR = "./__pycache__/tmp"
SAMPLE_RATE = 44100
def zero_padding(y: np.ndarray, end: int):
size = len(y)
if size < end:
return np.concatenate((y, np.zeros(end - size)))
elif size > end:
return y[-end:]
return y
def audio2mel(audio_path: str, seg_len=20):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = zero_padding(y, seg_len * sr)
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
librosa.display.specshow(log_mel_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def audio2cqt(audio_path: str, seg_len=20):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = zero_padding(y, seg_len * sr)
cqt_spec = librosa.cqt(y=y, sr=sr)
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
librosa.display.specshow(log_cqt_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def audio2chroma(audio_path: str, seg_len=20):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
y = zero_padding(y, seg_len * sr)
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
librosa.display.specshow(log_chroma_spec)
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/output.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
if not wav_path:
return None, "Please input an audio!"
spec = log_name.split("_")[-3]
os.makedirs(folder_path, exist_ok=True)
try:
model = EvalNet(log_name, len(CLASSES)).model
eval("audio2%s" % spec)(wav_path)
except Exception as e:
return None, f"{e}"
input = embed_img(f"{folder_path}/output.jpg")
output: torch.Tensor = model(input)
pred_id = torch.max(output.data, 1)[1]
return (
os.path.basename(wav_path),
CLASSES[pred_id].capitalize(),
)
if __name__ == "__main__":
warnings.filterwarnings("ignore")
models = get_modelist(assign_model="vit_l_16_cqt")
examples = []
example_audios = find_audio_files()
for audio in example_audios:
examples.append([audio, models[0]])
with gr.Blocks() as demo:
gr.Interface(
fn=infer,
inputs=[
gr.Audio(label="Upload a recording", type="filepath"),
gr.Dropdown(choices=models, label="Select a model", value=models[0]),
],
outputs=[
gr.Textbox(label="Audio filename", show_copy_button=True),
gr.Textbox(
label="Chinese pentatonic mode recognition",
show_copy_button=True,
),
],
examples=examples,
cache_examples=False,
flagging_mode="never",
title="It is recommended to keep the recording length around 20s.",
)
gr.Markdown(
"""
# Cite
```bibtex
@dataset{zhaorui_liu_2021_5676893,
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
title = {CCMusic: an Open and Diverse Database for Chinese Music Information Retrieval Research},
month = {mar},
year = {2024},
publisher = {HuggingFace},
version = {1.2},
url = {https://huggingface.co/ccmusic-database}
}
```"""
)
demo.launch()