Spaces:
Running
Running
File size: 6,997 Bytes
7c99075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import os
import torch
import random
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from utils import get_modelist, find_files, embed_img, TEMP_DIR
from collections import Counter
from model import EvalNet
TRANSLATE = {
"vibrato": "颤音",
"upward_portamento": "上滑音",
"downward_portamento": "下滑音",
"returning_portamento": "回滑音",
"glissando": "刮奏, 花指",
"tremolo": "摇指",
"harmonics": "泛音",
"plucks": "勾, 打, 抹, 托, ...",
}
CLASSES = list(TRANSLATE.keys())
SAMPLE_RATE = 44100
def circular_padding(spec: np.ndarray, end: int):
size = len(spec)
if end <= size:
return spec
num_padding = end - size
num_repeat = num_padding // size + int(num_padding % size != 0)
padding = np.tile(spec, num_repeat)
return np.concatenate((spec, padding))[:end]
def wav2mel(audio_path: str, width=3):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
total_frames = len(y)
if total_frames % (width * sr) != 0:
count = total_frames // (width * sr) + 1
y = circular_padding(y, count * width * sr)
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_mel_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_mel_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def wav2cqt(audio_path: str, width=3):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
total_frames = len(y)
if total_frames % (width * sr) != 0:
count = total_frames // (width * sr) + 1
y = circular_padding(y, count * width * sr)
cqt_spec = librosa.cqt(y=y, sr=sr)
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_cqt_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_cqt_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def wav2chroma(audio_path: str, width=3):
os.makedirs(TEMP_DIR, exist_ok=True)
try:
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
total_frames = len(y)
if total_frames % (width * sr) != 0:
count = total_frames // (width * sr) + 1
y = circular_padding(y, count * width * sr)
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_chroma_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_chroma_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def most_frequent_value(lst: list):
counter = Counter(lst)
max_count = max(counter.values())
for element, count in counter.items():
if count == max_count:
return element
return None
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
if not wav_path:
return None, "请输入音频 Please input an audio!"
try:
model = EvalNet(log_name, len(TRANSLATE)).model
except Exception as e:
return None, f"{e}"
spec = log_name.split("_")[-3]
eval("wav2%s" % spec)(wav_path)
jpgs = find_files(folder_path, ".jpg")
preds = []
for jpg in jpgs:
input = embed_img(jpg)
output: torch.Tensor = model(input)
preds.append(torch.max(output.data, 1)[1])
pred_id = most_frequent_value(preds)
return (
os.path.basename(wav_path),
f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})",
)
if __name__ == "__main__":
warnings.filterwarnings("ignore")
models = get_modelist()
examples = []
example_wavs = find_files()
model_num = len(models)
for wav in example_wavs:
examples.append([wav, models[random.randint(0, model_num - 1)]])
with gr.Blocks() as demo:
gr.Interface(
fn=infer,
inputs=[
gr.Audio(label="上传录音 Upload a recording", type="filepath"),
gr.Dropdown(
choices=models, label="选择模型 Select a model", value=models[0]
),
],
outputs=[
gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True),
gr.Textbox(
label="古筝演奏技法识别 Guzheng playing tech recognition",
show_copy_button=True,
),
],
examples=examples,
cache_examples=False,
flagging_mode="never",
title="建议录音时长保持在 3s 左右<br>It is recommended to keep the recording length around 3s.",
)
gr.Markdown(
"""
# 引用 Cite
```bibtex
@dataset{zhaorui_liu_2021_5676893,
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
title = {CCMusic: an Open and Diverse Database for Chinese Music Information Retrieval Research},
month = {mar},
year = {2024},
publisher = {HuggingFace},
version = {1.2},
url = {https://huggingface.co/ccmusic-database}
}
```"""
)
demo.launch()
|