Spaces:
Running
Running
File size: 6,297 Bytes
7c99075 54b4b45 7c99075 36a6259 7c99075 36a6259 7c99075 c5069aa 7c99075 c5069aa 7c99075 c5069aa 7c99075 36a6259 7c99075 c5069aa 7c99075 c5069aa 7c99075 7f4564b 7c99075 7f4564b 7c99075 36a6259 7c99075 36a6259 7c99075 36a6259 7c99075 36a6259 7c99075 36a6259 7c99075 e628636 ccbcfc4 6e2dc14 9853314 6e2dc14 9853314 6e2dc14 7c99075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import os
import torch
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from collections import Counter
from model import EvalNet
from utils import get_modelist, find_files, embed_img
TRANSLATE = {
"vibrato": "chan yin",
"upward_portamento": "shang hua yin",
"downward_portamento": "xia hua yin",
"returning_portamento": "hui hua yin",
"glissando": "gua zou, hua zhi",
"tremolo": "yao zhi",
"harmonics": "fan yin",
"plucks": "gou, da, mo, tuo, ...",
}
CLASSES = list(TRANSLATE.keys())
TEMP_DIR = "./__pycache__/tmp"
SAMPLE_RATE = 44100
def circular_padding(spec: np.ndarray, end: int):
size = len(spec)
if end <= size:
return spec
num_padding = end - size
num_repeat = num_padding // size + int(num_padding % size != 0)
padding = np.tile(spec, num_repeat)
return np.concatenate((spec, padding))[:end]
def wav2mel(audio_path: str, width=3):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
total_frames = len(y)
if total_frames % (width * sr) != 0:
count = total_frames // (width * sr) + 1
y = circular_padding(y, count * width * sr)
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_mel_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_mel_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def wav2cqt(audio_path: str, width=3):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
total_frames = len(y)
if total_frames % (width * sr) != 0:
count = total_frames // (width * sr) + 1
y = circular_padding(y, count * width * sr)
cqt_spec = librosa.cqt(y=y, sr=sr)
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_cqt_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_cqt_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def wav2chroma(audio_path: str, width=3):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
total_frames = len(y)
if total_frames % (width * sr) != 0:
count = total_frames // (width * sr) + 1
y = circular_padding(y, count * width * sr)
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_chroma_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_chroma_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{TEMP_DIR}/{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def most_frequent_value(lst: list):
counter = Counter(lst)
max_count = max(counter.values())
for element, count in counter.items():
if count == max_count:
return element
return None
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
if not wav_path:
return None, "Please input an audio!"
spec = log_name.split("_")[-3]
os.makedirs(folder_path, exist_ok=True)
try:
model = EvalNet(log_name, len(TRANSLATE)).model
eval("wav2%s" % spec)(wav_path)
except Exception as e:
return None, f"{e}"
jpgs = find_files(folder_path, ".jpg")
preds = []
for jpg in jpgs:
input = embed_img(jpg)
output: torch.Tensor = model(input)
preds.append(torch.max(output.data, 1)[1])
pred_id = most_frequent_value(preds)
return (
os.path.basename(wav_path),
f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})",
)
if __name__ == "__main__":
warnings.filterwarnings("ignore")
models = get_modelist(assign_model="vit_l_16_mel")
examples = []
example_wavs = find_files()
for wav in example_wavs:
examples.append([wav, models[0]])
with gr.Blocks() as demo:
gr.Interface(
fn=infer,
inputs=[
gr.Audio(label="Upload a recording", type="filepath"),
gr.Dropdown(choices=models, label="Select a model", value=models[0]),
],
outputs=[
gr.Textbox(label="Audio filename", show_copy_button=True),
gr.Textbox(
label="Guzheng playing tech recognition",
show_copy_button=True,
),
],
examples=examples,
cache_examples=False,
flagging_mode="never",
title="It is recommended to keep the recording length around 3s.",
)
gr.Markdown(
"""
# Cite
```bibtex
@article{Zhou-2025,
author = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han},
title = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research},
journal = {Transactions of the International Society for Music Information Retrieval},
volume = {8},
number = {1},
pages = {22--38},
month = {Mar},
year = {2025},
url = {https://doi.org/10.5334/tismir.194},
doi = {10.5334/tismir.194}
}
```"""
)
demo.launch()
|