import os import torch import random import shutil import librosa import warnings import numpy as np import gradio as gr import librosa.display import matplotlib.pyplot as plt from utils import get_modelist, find_files, embed_img, TEMP_DIR from collections import Counter from model import EvalNet TRANSLATE = { "vibrato": "颤音", "upward_portamento": "上滑音", "downward_portamento": "下滑音", "returning_portamento": "回滑音", "glissando": "刮奏, 花指", "tremolo": "摇指", "harmonics": "泛音", "plucks": "勾, 打, 抹, 托, ...", } CLASSES = list(TRANSLATE.keys()) SAMPLE_RATE = 44100 def circular_padding(spec: np.ndarray, end: int): size = len(spec) if end <= size: return spec num_padding = end - size num_repeat = num_padding // size + int(num_padding % size != 0) padding = np.tile(spec, num_repeat) return np.concatenate((spec, padding))[:end] def wav2mel(audio_path: str, width=3): os.makedirs(TEMP_DIR, exist_ok=True) try: y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) total_frames = len(y) if total_frames % (width * sr) != 0: count = total_frames // (width * sr) + 1 y = circular_padding(y, count * width * sr) mel_spec = librosa.feature.melspectrogram(y=y, sr=sr) log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) dur = librosa.get_duration(y=y, sr=sr) total_frames = log_mel_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_mel_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"{TEMP_DIR}/{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() except Exception as e: print(f"Error converting {audio_path} : {e}") def wav2cqt(audio_path: str, width=3): os.makedirs(TEMP_DIR, exist_ok=True) try: y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) total_frames = len(y) if total_frames % (width * sr) != 0: count = total_frames // (width * sr) + 1 y = circular_padding(y, count * width * sr) cqt_spec = librosa.cqt(y=y, sr=sr) log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max) dur = librosa.get_duration(y=y, sr=sr) total_frames = log_cqt_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_cqt_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"{TEMP_DIR}/{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() except Exception as e: print(f"Error converting {audio_path} : {e}") def wav2chroma(audio_path: str, width=3): os.makedirs(TEMP_DIR, exist_ok=True) try: y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) total_frames = len(y) if total_frames % (width * sr) != 0: count = total_frames // (width * sr) + 1 y = circular_padding(y, count * width * sr) chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr) log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max) dur = librosa.get_duration(y=y, sr=sr) total_frames = log_chroma_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_chroma_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"{TEMP_DIR}/{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() except Exception as e: print(f"Error converting {audio_path} : {e}") def most_frequent_value(lst: list): counter = Counter(lst) max_count = max(counter.values()) for element, count in counter.items(): if count == max_count: return element return None def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR): if os.path.exists(folder_path): shutil.rmtree(folder_path) if not wav_path: return None, "请输入音频 Please input an audio!" try: model = EvalNet(log_name, len(TRANSLATE)).model except Exception as e: return None, f"{e}" spec = log_name.split("_")[-3] eval("wav2%s" % spec)(wav_path) jpgs = find_files(folder_path, ".jpg") preds = [] for jpg in jpgs: input = embed_img(jpg) output: torch.Tensor = model(input) preds.append(torch.max(output.data, 1)[1]) pred_id = most_frequent_value(preds) return ( os.path.basename(wav_path), f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})", ) if __name__ == "__main__": warnings.filterwarnings("ignore") models = get_modelist() examples = [] example_wavs = find_files() model_num = len(models) for wav in example_wavs: examples.append([wav, models[random.randint(0, model_num - 1)]]) with gr.Blocks() as demo: gr.Interface( fn=infer, inputs=[ gr.Audio(label="上传录音 Upload a recording", type="filepath"), gr.Dropdown( choices=models, label="选择模型 Select a model", value=models[0] ), ], outputs=[ gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True), gr.Textbox( label="古筝演奏技法识别 Guzheng playing tech recognition", show_copy_button=True, ), ], examples=examples, cache_examples=False, flagging_mode="never", title="建议录音时长保持在 3s 左右
It is recommended to keep the recording length around 3s.", ) gr.Markdown( """ # 引用 Cite ```bibtex @dataset{zhaorui_liu_2021_5676893, author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han}, title = {CCMusic: an Open and Diverse Database for Chinese Music Information Retrieval Research}, month = {mar}, year = {2024}, publisher = {HuggingFace}, version = {1.2}, url = {https://huggingface.co/ccmusic-database} } ```""" ) demo.launch()