Spaces:
Running
Running
File size: 5,989 Bytes
f1b22d5 adac6eb f1b22d5 d08ce40 f1b22d5 f723eb2 f1b22d5 d08ce40 f1b22d5 6e9a4e4 f1b22d5 f723eb2 f1b22d5 6e9a4e4 f1b22d5 d08ce40 f1b22d5 d08ce40 f1b22d5 1358155 f1b22d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import os
import torch
import librosa
import warnings
import numpy as np
import pandas as pd
import gradio as gr
import librosa.display
from model import EvalNet, t_EvalNet
from utils import get_modelist, find_files, embed, MODEL_DIR
TRANSLATE = {
"chanyin": "Vibrato", # 颤音
"boxian": "Plucks", # 拨弦
"shanghua": "Upward Portamento", # 上滑音
"xiahua": "Downward Portamento", # 下滑音
"huazhi/guazou/lianmo/liantuo": "Glissando", # 花指\刮奏\连抹\连托
"yaozhi": "Tremolo", # 摇指
"dianyin": "Point Note", # 点音
}
CLASSES = list(TRANSLATE.keys())
TEMP_DIR = "./__pycache__/tmp"
SAMPLE_RATE = 44100
HOP_LENGTH = 512
TIME_LENGTH = 3
def logMel(y, sr=SAMPLE_RATE):
mel = librosa.feature.melspectrogram(
y=y,
sr=sr,
hop_length=HOP_LENGTH,
fmin=27.5,
)
return librosa.power_to_db(mel, ref=np.max)
def logCqt(y, sr=SAMPLE_RATE):
cqt = librosa.cqt(
y,
sr=sr,
hop_length=HOP_LENGTH,
fmin=27.5,
n_bins=88,
bins_per_octave=12,
)
return ((1.0 / 80.0) * librosa.core.amplitude_to_db(np.abs(cqt), ref=np.max)) + 1.0
def logChroma(y, sr=SAMPLE_RATE):
chroma = librosa.feature.chroma_stft(
y=y,
sr=sr,
hop_length=HOP_LENGTH,
)
return (
(1.0 / 80.0) * librosa.core.amplitude_to_db(np.abs(chroma), ref=np.max)
) + 1.0
def RoW_norm(data):
common_sum = 0
square_sum = 0
tfle = 0
for i in range(len(data)):
tfle += (data[i].sum(-1).sum(0) != 0).astype("float").sum()
common_sum += data[i].sum(-1).sum(-1)
square_sum += (data[i] ** 2).sum(-1).sum(-1)
common_avg = common_sum / tfle
square_avg = square_sum / tfle
std = np.sqrt(square_avg - common_avg**2)
return common_avg, std
def norm(data):
size = data.shape
avg, std = RoW_norm(data)
avg = np.tile(avg.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
std = np.tile(std.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
return (data - avg) / std
def chunk_data(f):
x = []
xdata = np.transpose(f)
s = SAMPLE_RATE * TIME_LENGTH // HOP_LENGTH
length = int(np.ceil((int(len(xdata) / s) + 1) * s))
app = np.zeros((length - xdata.shape[0], xdata.shape[1]))
xdata = np.concatenate((xdata, app), 0)
for i in range(int(length / s)):
data = xdata[int(i * s) : int(i * s + s)]
x.append(np.transpose(data[:s, :]))
return np.array(x)
def load(audio_path: str, converto="mel"):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
spec = eval("log%s(y, sr)" % converto.capitalize())
x_spec = chunk_data(spec)
Xtr_spec = np.expand_dims(x_spec, axis=3)
return list(norm(Xtr_spec))
def format_second(seconds):
integer_part = int(seconds)
decimal_part = round(seconds - integer_part, 3)
hours, remainder = divmod(integer_part, 3600)
minutes, seconds = divmod(remainder, 60)
return f"{hours:02}:{minutes:02}:{seconds:02}.{decimal_part:.3f}"
def infer(audio_path: str, log_name: str):
if not audio_path:
return "Please input an audio!", None
backbone = "_".join(log_name.split("_")[:-1])
spec = log_name.split("_")[-1]
try:
input = load(audio_path, converto=spec)
dur = librosa.get_duration(path=audio_path)
frames_per_3s = input[0].shape[1]
if "vit" in backbone or "swin" in backbone:
eval_net = t_EvalNet(
backbone,
len(TRANSLATE),
input[0].shape[1],
weight_path=f"{MODEL_DIR}/{log_name}.pt",
)
else:
eval_net = EvalNet(
backbone,
len(TRANSLATE),
input[0].shape[1],
weight_path=f"{MODEL_DIR}/{log_name}.pt",
)
input_size = eval_net.get_input_size()
embeded_input = embed(input, input_size)
output = list(eval_net.forward(embeded_input))
except Exception as e:
return f"{e}", None
index = 0
outputs = []
for y in output:
preds = list(y.T)
for pred in preds:
start = index * TIME_LENGTH / frames_per_3s
if start > dur:
break
to = (index + 1) * TIME_LENGTH / frames_per_3s
outputs.append(
{
"Frame": f"{format_second(start)} - {format_second(to)}",
"Tech": TRANSLATE[CLASSES[torch.argmax(pred).item()]],
}
)
index += 1
return os.path.basename(audio_path), pd.DataFrame(outputs)
if __name__ == "__main__":
warnings.filterwarnings("ignore")
models = get_modelist(assign_model="VGG19_mel")
examples = []
example_wavs = find_files()
for wav in example_wavs:
examples.append([wav, models[0]])
with gr.Blocks() as demo:
gr.Interface(
fn=infer,
inputs=[
gr.Audio(label="Upload audio", type="filepath"),
gr.Dropdown(choices=models, label="Select a model", value=models[0]),
],
outputs=[
gr.Textbox(label="Audio filename", show_copy_button=True),
gr.Dataframe(label="Frame-level guzheng playing technique detection"),
],
examples=examples,
cache_examples=False,
flagging_mode="never",
title="It is suggested that the recording time should not be too long",
)
gr.Markdown(
"""
# Cite
```bibtex
@article{Zhou-2025,
title = {CCMusic: an Open and Diverse Database for Chinese Music Information Retrieval Research},
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
journal = {Transactions of the International Society for Music Information Retrieval},
year = {2025}
}
```"""
)
demo.launch()
|