Spaces:
Running
Running
import os | |
import torch | |
import numpy as np | |
from torchvision.transforms import Compose, Resize, Normalize | |
from huggingface_hub import snapshot_download | |
MODEL_DIR = snapshot_download( | |
"ccmusic-database/Guzheng_Tech99", | |
cache_dir="./__pycache__", | |
) | |
def toCUDA(x): | |
if hasattr(x, "cuda"): | |
if torch.cuda.is_available(): | |
return x.cuda() | |
return x | |
def find_files(folder_path=f"{MODEL_DIR}/examples", ext=".flac"): | |
audio_files = [] | |
for root, _, files in os.walk(folder_path): | |
for file in files: | |
if file.endswith(ext): | |
file_path = os.path.join(root, file) | |
audio_files.append(file_path) | |
return audio_files | |
def get_modelist(model_dir=MODEL_DIR, assign_model=""): | |
pt_files = [] | |
for _, _, files in os.walk(model_dir): | |
for file in files: | |
if file.endswith(".pt"): | |
model = os.path.basename(file)[:-3] | |
if assign_model and assign_model.lower() in model: | |
pt_files.insert(0, model) | |
else: | |
pt_files.append(model) | |
return pt_files | |
def embed(input: list, img_size: int): | |
compose = Compose( | |
[ | |
Resize([img_size, img_size]), | |
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
] | |
) | |
inputs = [] | |
for x in input: | |
x = np.array(x).transpose(2, 0, 1) | |
x = torch.from_numpy(x).repeat(3, 1, 1) | |
inputs.append(compose(x).float()) | |
return toCUDA(torch.tensor(np.array(inputs))) | |