File size: 5,974 Bytes
82336dd
 
 
 
 
 
 
 
 
 
 
83c2392
82336dd
 
 
83c2392
 
 
 
82336dd
 
83c2392
82336dd
 
 
 
981a678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82336dd
 
 
981a678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82336dd
 
 
981a678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82336dd
 
 
 
 
 
 
 
 
 
 
 
 
83c2392
82336dd
981a678
 
82336dd
 
981a678
b6b77a2
82336dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1c188
82336dd
 
 
bc1c188
82336dd
 
 
 
 
83c2392
 
82336dd
 
83c2392
 
82336dd
 
 
 
83c2392
82336dd
 
 
 
83c2392
82336dd
95980f9
3c315e8
ab58dee
 
cf390e0
 
 
ab58dee
cf390e0
ab58dee
 
82336dd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import torch
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from collections import Counter
from model import EvalNet
from utils import get_modelist, find_wav_files, embed_img


TRANSLATE = {
    "m_bel": "Bel Canto, Male",
    "f_bel": "Bel Canto, Female",
    "m_folk": "Folk Singing, Male",
    "f_folk": "Folk Singing, Female",
}
CLASSES = list(TRANSLATE.keys())
TEMP_DIR = "./__pycache__/tmp"
SAMPLE_RATE = 22050


def wav2mel(audio_path: str, width=1.6, topdb=40):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    non_silents = librosa.effects.split(y, top_db=topdb)
    non_silent = np.concatenate([y[start:end] for start, end in non_silents])
    mel_spec = librosa.feature.melspectrogram(y=non_silent, sr=sr)
    log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
    dur = librosa.get_duration(y=non_silent, sr=sr)
    total_frames = log_mel_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_mel_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/mel_{round(dur, 2)}_{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def wav2cqt(audio_path: str, width=1.6, topdb=40):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    non_silents = librosa.effects.split(y, top_db=topdb)
    non_silent = np.concatenate([y[start:end] for start, end in non_silents])
    cqt_spec = librosa.cqt(y=non_silent, sr=sr)
    log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
    dur = librosa.get_duration(y=non_silent, sr=sr)
    total_frames = log_cqt_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_cqt_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/cqt_{round(dur, 2)}_{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def wav2chroma(audio_path: str, width=1.6, topdb=40):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    non_silents = librosa.effects.split(y, top_db=topdb)
    non_silent = np.concatenate([y[start:end] for start, end in non_silents])
    chroma_spec = librosa.feature.chroma_stft(y=non_silent, sr=sr)
    log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
    dur = librosa.get_duration(y=non_silent, sr=sr)
    total_frames = log_chroma_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_chroma_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/chroma_{round(dur, 2)}_{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def most_common_element(input_list: list):
    counter = Counter(input_list)
    mce, _ = counter.most_common(1)[0]
    return mce


def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
    if os.path.exists(folder_path):
        shutil.rmtree(folder_path)

    if not wav_path:
        return None, "Please input an audio!"

    spec = log_name.split("_")[-3]
    os.makedirs(folder_path, exist_ok=True)
    try:
        model = EvalNet(log_name, len(TRANSLATE)).model
        eval("wav2%s" % spec)(wav_path)

    except Exception as e:
        return None, f"{e}"

    outputs = []
    all_files = os.listdir(folder_path)
    for file_name in all_files:
        if file_name.lower().endswith(".jpg"):
            file_path = os.path.join(folder_path, file_name)
            input = embed_img(file_path)
            output: torch.Tensor = model(input)
            pred_id = torch.max(output.data, 1)[1]
            outputs.append(int(pred_id))

    max_count_item = most_common_element(outputs)
    shutil.rmtree(folder_path)
    return os.path.basename(wav_path), TRANSLATE[CLASSES[max_count_item]]


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    models = get_modelist(assign_model="GoogleNet_mel")
    examples = []
    example_wavs = find_wav_files()
    for wav in example_wavs:
        examples.append([wav, models[0]])

    with gr.Blocks() as demo:
        gr.Interface(
            fn=infer,
            inputs=[
                gr.Audio(label="Upload a recording (>40dB)", type="filepath"),
                gr.Dropdown(choices=models, label="Select a model", value=models[0]),
            ],
            outputs=[
                gr.Textbox(label="Audio filename", show_copy_button=True),
                gr.Textbox(label="Singing method recognition", show_copy_button=True),
            ],
            examples=examples,
            cache_examples=False,
            allow_flagging="never",
            title="It is recommended to keep the recording length around 5s, too long will affect the recognition efficiency.",
        )

        gr.Markdown(
            """
# Cite
```bibtex
@article{Zhou-2025,
  author  = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han},
  title   = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research},
  journal = {Transactions of the International Society for Music Information Retrieval},
  volume  = {8},
  number  = {1},
  pages   = {22--38},
  month   = {Mar},
  year    = {2025},
  url     = {https://doi.org/10.5334/tismir.194},
  doi     = {10.5334/tismir.194}
}
```"""
        )

    demo.launch()