import os import torch import shutil import librosa import warnings import numpy as np import gradio as gr import librosa.display import matplotlib.pyplot as plt from collections import Counter from model import EvalNet from utils import ( get_modelist, find_wav_files, embed_img, _L, SAMPLE_RATE, TEMP_DIR, TRANSLATE, CLASSES, ) def wav2mel(audio_path: str, width=1.6, topdb=40): y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) non_silents = librosa.effects.split(y, top_db=topdb) non_silent = np.concatenate([y[start:end] for start, end in non_silents]) mel_spec = librosa.feature.melspectrogram(y=non_silent, sr=sr) log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) dur = librosa.get_duration(y=non_silent, sr=sr) total_frames = log_mel_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_mel_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"{TEMP_DIR}/mel_{round(dur, 2)}_{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() def wav2cqt(audio_path: str, width=1.6, topdb=40): y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) non_silents = librosa.effects.split(y, top_db=topdb) non_silent = np.concatenate([y[start:end] for start, end in non_silents]) cqt_spec = librosa.cqt(y=non_silent, sr=sr) log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max) dur = librosa.get_duration(y=non_silent, sr=sr) total_frames = log_cqt_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_cqt_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"{TEMP_DIR}/cqt_{round(dur, 2)}_{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() def wav2chroma(audio_path: str, width=1.6, topdb=40): y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) non_silents = librosa.effects.split(y, top_db=topdb) non_silent = np.concatenate([y[start:end] for start, end in non_silents]) chroma_spec = librosa.feature.chroma_stft(y=non_silent, sr=sr) log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max) dur = librosa.get_duration(y=non_silent, sr=sr) total_frames = log_chroma_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_chroma_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"{TEMP_DIR}/chroma_{round(dur, 2)}_{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() def most_common_element(input_list: list): counter = Counter(input_list) mce, _ = counter.most_common(1)[0] return mce def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR): status = "Success" filename = result = None try: if os.path.exists(folder_path): shutil.rmtree(folder_path) if not wav_path: raise ValueError("请输入音频!") spec = log_name.split("_")[-3] os.makedirs(folder_path, exist_ok=True) model = EvalNet(log_name, len(TRANSLATE)).model eval("wav2%s" % spec)(wav_path) outputs = [] all_files = os.listdir(folder_path) for file_name in all_files: if file_name.lower().endswith(".jpg"): file_path = os.path.join(folder_path, file_name) input = embed_img(file_path) output: torch.Tensor = model(input) pred_id = torch.max(output.data, 1)[1] outputs.append(int(pred_id)) max_count_item = most_common_element(outputs) shutil.rmtree(folder_path) filename = os.path.basename(wav_path) result = TRANSLATE[CLASSES[max_count_item]] except Exception as e: status = f"{e}" return status, filename, result if __name__ == "__main__": warnings.filterwarnings("ignore") models = get_modelist(assign_model="GoogleNet_mel") examples = [] example_wavs = find_wav_files() for wav in example_wavs: examples.append([wav, models[0]]) with gr.Blocks() as demo: gr.Interface( fn=infer, inputs=[ gr.Audio(label=_L("上传录音 (>40dB)"), type="filepath"), gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]), ], outputs=[ gr.Textbox(label=_L("状态栏"), show_copy_button=True), gr.Textbox(label=_L("音频文件名"), show_copy_button=True), gr.Textbox(label=_L("唱法识别"), show_copy_button=True), ], examples=examples, cache_examples=False, allow_flagging="never", title=_L("建议录音时长保持在 5s 左右, 过长会影响识别效率"), ) gr.Markdown( f"# {_L('引用')}" + """ ```bibtex @article{Zhou-2025, author = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han}, title = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research}, journal = {Transactions of the International Society for Music Information Retrieval}, volume = {8}, number = {1}, pages = {22--38}, month = {Mar}, year = {2025}, url = {https://doi.org/10.5334/tismir.194}, doi = {10.5334/tismir.194} } ```""" ) demo.launch()